ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

This implantable battery powers itself exclusively with the body’s own oxygen

The output is still very low, but for the first time we have something than can harness oxygen to power medical devices indefinitely.

Rupendra BrahambhattbyRupendra Brahambhatt
March 27, 2024
in Biology, Electronics, Health, Inventions, News, Research, Technology
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
An illustration of the oxygen-powered battery.
An illustration of the oxygen-powered battery. Image credits: Chem/Lv et al.

Oxygen is the fuel for much of life on Earth. But did you know that same oxygen in our bodies could one day power batteries in medical implants? A new study has revealed a novel sodium-oxygen (Na-O2) battery that does just this.

A problem with medical implants is that doctors have to perform invasive surgeries to replace their batteries from time to time. This newly proposed Na-O2 battery, however, would run on our oxygen — it would recharge itself.

“We propose a novel Na-O2 battery design for in vivo applications that utilizes a stable sodium-based alloy as the anode and oxygen from body fluids as the cathode component. This battery demonstrates promising potential as an energy source for powering micro-implantable electronics,” the study authors note.

How an oxygen-driven battery works

If there is one substance that is abundant in mammal bodies, it is oxygen. Oxygen is constantly being replaced via respiration and is key to many energy-centered biological processes. So, how could we use this very bioavailable molecule in a battery? The researchers at Tianjin University of Technology were trying to find the answer to this question.

“If we can leverage the continuous supply of oxygen in the body, battery life won’t be limited by the finite materials within conventional batteries,” Xizheng Liu, one of the study authors and a professor of energy materials and devices at Tianjin University, said.

They wanted to develop a safe, feasible, and efficient oxygen-powered battery, and the only way to do this was to use components and chemicals compatible with living systems. 

With this in mind, they used a sodium-based alloy as the anode. Sodium is already integral to the human diet and body, playing a key role in maintaining nerves, body fluids, and muscles. All these factors make it an ideal biocompatible anode.

As the separator, the researchers employed nanoporous gold (NPG), a material that has pores a thousand times smaller than the width of a human hair. NPG is already used in many biological applications because of its biocompatibility and high stability.

After creating their novel battery, they encased this arrangement in a soft polymer. They then surgically implanted it under the skin in rats, which served as model animals for the experiment. 

RelatedPosts

This Surprising Trick Could Make Your Lithium-Ion Batteries Last 50% Longer
Bread mold could build the batteries of the future
Tiny blood testing device inserted under the skin delivers instant results
Cyber-crime turns frightening real: hacking pacemakers and other medical devices

“After 24 hours of implantation, an unstable discharge voltage plateau was observed at 1 and 2 μA/cm2 indicating that only a small amount of succus or blood entered the cathode compartment and enabled a continuous O2 supply,” the study authors note.

“By further extending the implantation for 2 weeks, stable voltage plateaus of approximately 1.4 and 1.3 V were obtained at 1 and 2 mA/cm2, respectively, with a maximum power density of 2.6 μW/cm2.  Similarly, after 4 weeks of implantation, the discharge voltage plateaus remained at approximately 1.3 and 1.2 V at 1 and 2 μA/cm2, respectively, indicating a steady and continuous O2 supply from the body fluids.”

For the first time, the researchers proved that internal oxygen could provide stable energy input to batteries. However, the output achieved during the study won’t be enough to power any medical implant. For instance, a pacemaker runs on a battery capable of generating 2 to 5 volts of output.

Therefore, further research is required to improve the Na-O2 battery performance, according to the study authors.

Showing great potential

When it comes to safety, the Na-O2 battery might be one of the most secure power solutions for medical devices. During the study, it didn’t cause any side effects in the model animals, and none of the byproducts it released were harmful to human health.

“The Na+ and OH ions produced during the discharge process enter the blood without causing electrolyte disturbance. The metabolism of substances in the body did not result in any abnormalities in the liver and kidney. The excellent bio-compatibility of the battery indicates immense potential for practical applications and has the potential to revolutionize the field of implantable batteries,” the researchers said.

The researchers also noticed that the blood vessels that suffered damage when they implanted the battery regenerated after some time around the implant. This surprising development hints that the Na-O2 battery can also be used for monitoring wound healing, according to Liu.

“While several fundamental studies and intrinsic challenges remain to be tackled, the Na-O2 battery is still highly promising and can spark a new revolution in the field of implantable devices, leading to the development of new methods for the treatment of various diseases.” 

The study is published in the journal Chem.

Tags: batterymedical implant

ShareTweetShare
Rupendra Brahambhatt

Rupendra Brahambhatt

Rupendra Brahambhatt is an experienced journalist and filmmaker covering culture, science, and entertainment news for the past five years. With a background in Zoology and Communication, he has been actively working with some of the most innovative media agencies in different parts of the globe.

Related Posts

Inventions

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

byMihai Andrei
2 weeks ago
Future

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

byTibi Puiu
2 weeks ago
Biology

Scientists Made a Battery Powered by Probiotics That’s Completely Biodegradable

byTibi Puiu
3 weeks ago
Future

This Stretchy Battery Still Works After Being Twisted, Punctured, and Cut in Half

byTibi Puiu
2 months ago

Recent news

Your gut has a secret weapon against ‘forever chemicals’: microbes

July 3, 2025

High IQ People Are Strikingly Better at Forecasting the Future

July 3, 2025

Newborns Feel Pain Long Before They Can Understand It

July 3, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.