ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

A yeast from Argentina’s Patagonia could usher in a beer revolution

Beer is already undergoing big changes in the world. But we're only scratching the surface of what can be done.

Mihai AndreibyMihai Andrei
September 24, 2024
in Biology, Chemistry, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Illustration of beer
AI-generated images of beer.

Lager beer (the crisp, cold-fermented, fizzy beer) dominates the global beer market. Around 90% of the world’s beer varieties are lager. But lagers are constrained by a surprisingly narrow genetic pool — the genetic pool of yeast.

Expanding the pool

If you’ve ever wondered why lagers taste so similar to one another, it’s because of the yeast. The vast majority of beers use a limited number of yeast strains. Primarily they use Saccharomyces pastorianus, a hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus. This restricted genetic diversity has confined the range of flavors and aromas in beer. In 2011, that all changed.

“Until a few years ago, it was impossible to create a new lager beer, simply because the maternal species of lager yeast, S. eubayanus, had not yet been discovered,” writes Jennifer Molinet in The Conversation. “But in 2011, this species was found on the bark of trees in Patagonia, Argentina. Since then, hundreds of strains have been isolated from Chilean and Argentinian forests, carrying a stunning amount of genetic diversity.”

A new study co-authored by Molinet leveraged three distinct Patagonian S. eubayanus lineages to expand the repertoire of lager yeast. Researchers combined these wild strains with S. cerevisiae through experimental evolution and selection processes. These enabled them to enhance desirable traits, such as fermentation efficiency and unique aroma profiles, in these novel hybrids.

The initial batches of yeast involved natural, spore-to-spore mating, but this did not initially show significant differences from their parents. To overcome this, the scientists employed experimental evolution — a process that mimics natural selection in a controlled environment. By subjecting the hybrids to different fermentation conditions over 250 generations, they pushed the hybrids beyond their original capacities. The hybrids were then elected based on their ability to thrive in environments with varying sugar content and ethanol levels, mimicking the challenging conditions of beer fermentation.

New yeast, new beer

The results were striking. The hybrids demonstrated enhanced fermentation performance, especially in terms of maltose and maltotriose consumption — two sugars crucial for beer fermentation. This increased sugar consumption led to higher ethanol production and unique aroma profiles that distinguish these hybrids from their commercial counterparts. The researchers also identified the gene mutations that influence this fermentation.

For brewers, the implications of these findings could be a game changer. The ability to craft beers with new flavors and aromas using these novel hybrids could open up a new market segment, appealing to craft beer enthusiasts and traditional lager lovers alike. The evolved hybrids have already shown fermentative capacities on par with, and in some cases exceeding, those of commercial strains. Moreover, their unique aroma profiles — ranging from sweet, fruity notes to more complex, spicy, and phenolic undertones — could diversify the sensory experiences offered by lagers.

RelatedPosts

Magnets could help make less foamy beer
Scientists describe method to create morphine at home
Scientists taste 170 year old shipwrecked beer
Humans were brewing beer before they started growing cereals

In the past, researchers have managed to genetically engineer yeasts to produce variations, but GMO beer didn’t prove too popular with consumers. This research promises to broaden the toolkit of brewers, leading to the development of yeast strains that are not only more efficient but also capable of producing a wider array of flavors and aromas. It represents a significant step forward from the genetically limited strains that have dominated the market for centuries.

Journal Reference: Jennifer Molinet et al, Wild Patagonian yeast improve the evolutionary potential of novel interspecific hybrid strains for lager brewing, PLOS Genetics (2024). DOI: 10.1371/journal.pgen.1011154

Tags: beeryeast

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

The octopus and the beer bottle: how intelligent octopuses are making the most of polluted oceans

byMihai Andrei
5 months ago
Archaeology

Scientists brew Biblical beer using 5,000-year-old yeast salvaged from Israel

byTibi Puiu
10 months ago
Biology

Beer could get new flavors from exotic yeasts in Patagonia

byMihai Andrei
12 months ago
Chemistry

Scientists brew the future with AI that ‘tastes’ Belgian beer to make it better

byTibi Puiu
1 year ago

Recent news

A 30-Year-Old Study Says Croissants Are Absolutely Terrible. Here’s why

June 11, 2025

Spanish Galleon Sank With $17-Billion Worth of Treasure In Today’s Money. Now Confirmed As the World’s Richest Shipwreck

June 11, 2025

The oceans are so acidic they’re dissolving the shells of marine creatures

June 10, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.