Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Nanotechnology

Researchers develop nanospears that can transport DNA to cells with pinpoint accuracy

This new technique is less harmful to the cells and more efficient than other non-viral DNA transfer techniques.

Francesca Schiopca by Francesca Schiopca
March 14, 2018
in Biology, Genetics, Nanotechnology, Science

Researchers have recently developed remote-controlled, needle-like nanospears capable of piercing membrane walls and delivering DNA into selected cells. This new technology allows biological materials to be transported throughout the body with pinpoint accuracy, thus making gene alteration a simpler and more effective procedure.

Genetically modified cells are now used in stem cell and cancer research, but the production of such cells is rather costly and inefficient, often including viruses, harsh chemical reagents or external electrical fields.

In the past, researchers used sharp-tipped nanoparticles stuck to surfaces in order to deliver molecules to cells, but removing the altered cells from the nanoparticle-coated surface was difficult. Other techniques involved self-propelled nanoparticles, but controlling them was not easy. In addition, mobile nanoparticles can generate toxic byproducts.

A team of scientists from the University of California, Los Angeles, wanted to make the process more efficient, so they developed biocompatible nanospears that can accurately transport biological material via an external magnetic field. In this way, cells are safe from damage and the use of chemical propellants is no longer necessary.

Authors Steven J. Jonas, Paul S. Weiss, Xiaobin Xu and colleagues fabricated nanospears using templates made of polystyrene beads. They put the beads on a silicon structure and etched them down into a sharp spear shape. After the beads’ removal, they coated the resulting silicon spears with thin layers of nickel and functionalized gold, so that biomolecules, such as DNA, could attach.

Next, the team scraped the nanospears from the silicon. Thanks to the magnetic nickel layer, scientists could accurately control the particles’ movements and orientation. Then, researchers tested their invention in a lab dish, where the nanospears had to deliver DNA to brain cancer cells. The cancerous cells were altered so that they would express a green fluorescent protein.

Researchers were pleased with the results: more than 90% of the cells remained viable, and more than 80% exhibited green fluorescence. The results also showed that this method was less harmful and more effective than other non-viral ones. The authors believe that this technique might lead to new ways to prepare vast numbers of cells for the coordinated manufacture of gene therapies.

The paper was published today in the journal ACS Nano.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Researchers encode “The Wizard of Oz” in DNA with unprecedented accuracy and efficiency
  2. Researchers pinpoint the brain area that ultimately governs attention and focus
  3. Where did our asses come from? Researchers pinpoint when this beast of burden was first domesticated
  4. Researchers make chicken cells resist bird flu by snipping out a tiny bit of their DNA
  5. Researchers pinpoint the brain’s anxiety centers
Tags: biological materialdnadna transportgene alterationgenetic modificationnanospearnanospearsnanotechnology

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW