ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Nano-machines made from DNA look like molecule-size hinges

Tibi PuiubyTibi Puiu
January 7, 2015
in Biology, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

For the very first time, engineers have used the DNA origami assembly method to build  complex DNA-based mechanism that performs a repeatable and reversible function. Mechanical engineers at The Ohio State University built their devices such that they may function like any regular macro-object, like opening and closing hinges. Their approach, however, is different than other DNA assembly projects which concentrated on mimicking biological systems or static shapes. Such dynamic molecule-sized devices could be used in smart drug delivery or self-assembling tiny transformers-like robots.

DNA origami hinges

DNA hinges

The DNA origami method for making nano-structures has been widely used since 2006, and is now a standard procedure for many labs that are developing future drug delivery systems and electronics. It involves taking long strands of DNA and coaxing them to fold into different shapes, then securing certain parts together with “staples” made from shorter DNA strands. The resulting structure is stable enough to perform a basic task, such as carrying a small amount of medicine inside a container-like DNA structure and opening the container to release it.

[RELATED] Nanorobots made out of DNA seek and kill cancer cells

“Nature has produced incredibly complex molecular machines at the nanoscale, and a major goal of bio-nanotechnology is to reproduce their function synthetically,” saidCarlos Castro, the group project leader and an assistant professor of mechanical and aerospace engineering. “In essence, we are using a bio-molecular system to mimic large-scale engineering systems to achieve the same goal of developing molecular machines.”

A DNA origami piston. Credit:  Ohio State University.
A DNA origami piston. Credit: Ohio State University.

To get their DNA machines to function properly, the engineers designed the flexing parts out of single-stranded DNA, while those regions that were supposed to be stiff were built from snips of double-stranded DNA. In the case of hinges that repeatedly open and close, this also had to perform their operation reversibly, so the engineers attached small strands of synthetic DNA off the side of the main components. Like a hook-and-loop fastener, the strands latch onto each other when the device is closed and release when opened. To control the operations of the machine, researchers make changes to the chemical environment. The machines then respond to this stimuli accordingly.

“DNA origami enables the precise fabrication of nanoscale geometries,” the authors write. “We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements…Our results demonstrate programmable motion of 2-D and 3-D DNA origami mechanisms constructed following a macroscopic machine design approach.”

origami hinge

This approach of designing simple joints and connecting them together to make more complex working systems is common in macroscopic machine design, but this is the first time it’s been done with DNA—and the first time anyone has tuned the DNA to produce reversible actuation of a complex mechanism, as described in a paper published in  Proceedings of the National Academy of Sciences.

RelatedPosts

Genetic ‘typos’ may be a more powerful driver of cancer in humans than environmental factors
Scientists extract human DNA from air and water, igniting privacy debate
How we got our big brains — missing genetic information and a stroke of luck
Liquid DNA crystals imaged in stunning timelapse

“I’m pretty excited by this idea,” Castro said. “I do think we can ultimately build something like a Transformer system, though maybe not quite like in the movies. I think of it more as a nano-machine that can detect signals such as the binding of a biomolecule, process information based on those signals, and then respond accordingly—maybe by generating a force or changing shape.”

 

Tags: dnaDNA origamimechanical engineering

ShareTweetShare
Tibi Puiu

Tibi Puiu

Related Posts

Genetics

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

byTibi Puiu
1 day ago
Future

A New AI Tool Can Recreate Your Face Using Nothing But Your DNA

byTibi Puiu
1 week ago
Archaeology

The People of Carthage Weren’t Who We Thought They Were

byTibi Puiu
3 weeks ago
Biology

Scientists Finally Solve the Mystery of the Irish Potato Blight’s Origins. It Came From The Andes

byTibi Puiu
3 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.