ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Evidence of 3.5-Billion-Year-Old Bacterial Ecosystems Found

Mihai AndreibyMihai Andrei
November 13, 2013 - Updated on January 6, 2014
in Biology, Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

To say that finding evidence of how life on Earth was 3.5 billion years ago is hard would be an understatement. Reconstructing the rise of life in its early stages is a monumental challenge – the evidence is only preserved in Earth’s oldest sedimentary rocks, and sedimentary rocks of that age are very hard to come by. However, a new study revealed the well preserved remnants of a complex ecosystem in a nearly 3.5 billion-year-old sedimentary rock sequence in Australia.

life australia
A rock surface is displaying “polygonal oscillation cracks” in the 3.48 billion years old Dresser Formation, Pilbara region, Western Australia. Such and similar sedimentary structures are of biological origin.

The study was conducted by a team which included Carnegie’s Nora Noffke, a visiting investigator, and Robert Hazen, a research scientist at the Carnegie Institution of Washington’s Geophysical Laboratory.

The Pilbara district of Western Australia is geologically speaking one of the most spectacular areas in the world. Scientists have described in detail deposits created by ancient photosynthetic bacteria, called stromatolites, and microfossils of bacteria – a very rare insight into that ancient world. However, one piece of the puzzle lacked from the Pilbara district: a phenomenon called microbially induced sedimentary structures, or MISS, had not previously been seen in this region. These structures are formed from mats of microbial material, much like mats seen today on stagnant waters, be they mainland or oceanic coastal lines. In other words, microbially induced sedimentary structures are primary sedimentary structures formed by the interaction of microbes with sediment and physical agents of erosion, deposition, and transportation.

But now, the team of geologists managed to locate this phenomenon in the old rocks, confirming their initial results with advanced chemical tests. The MISS was found in a formation called the Dresser Formation, and it strongly resembles a similar structure, dated 2.9 billion years ago.

“This work extends the geological record of MISS by almost 300 million years,” said Noffke, who is also a professor at ODU. “Complex mat-forming microbial communities likely existed almost 3.5 billion years ago.”

The team suggests that the bacterial mats were formed as a result of the interaction between the interactions of bacterial films with shoreline sediments from the region.

“The structures give a very clear signal on what the ancient conditions were, and what the bacteria composing the biofilms were able to do,” Noffke said.

Studying MISS is very important, because they are among the main targets for the Mars rovers. Thus, these results could have significant implications for studying life on other places in our solar system.

Journal Reference:

RelatedPosts

Over 100 new species of bacteria discovered in your gut
Japanese project aims to turn CO2 into natural gas
Earth’s oldest rock was actually found on the moon and brought home by Apollo 14
Ultrasound-controlled bacteria destroy cancer tumors
  1. Nora Noffke, Daniel Christian, David Wacey, Robert M. Hazen. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in theca.3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia.Astrobiology, 2013; 131108054848000 DOI:10.1089/ast.2013.1030
Tags: bacteriarocksedimentary

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Biology

The secret to making plant-based milk tastier and healthier: bacteria

byAlexandra Gerea
1 month ago
Geology

This strange rock on Mars is forcing us to rethink the Red Planet’s history

byTudor Tarita
1 month ago
Animals

Sea otters have a favorite rock that they keep in a fur pocker under their arms. They have a clever reason for it

byMihai Andrei
3 months ago
Biology

Can Bacteria Solve Crimes? The “Sexome” Could Help Catch Sexual Predators

byMihai Andrei
3 months ago

Recent news

Earliest Reptile Footprints Found By Amateur Paleontologist in 355-Million-Year-Old Rock Push Back the Dawn of Land Animals

May 14, 2025

A Massive Brain Study Reveals the Hidden Work Your Mind Does While You Read

May 14, 2025

Scientists Create “Bait” to Lure Baby Corals Back to Dying Reefs

May 14, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.