Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Space Astronomy

Seas of molten and solidified rock on the Moon can be mistaken for pristine rocks

Mihai Andrei by Mihai Andrei
August 4, 2016
in Astronomy, Geology

A new analysis of data from NASA’s Lunar Orbiter Laser Altimeter (LOLA) shows that molten rock created by lunar impacts has been around for much longer than previously believed.

moon melting

During its earliest days, the Moon was covered in an ocean of molten rock, pretty much like every planet out there. As that lunar magma ocean cooled over millions of years, a process called igneous differentiation took over. Basically, igneous differentiation is an umbrella term for the various processes by which magmas undergo bulk chemical change during the partial melting process (or cooling, emplacement or eruption).

ADVERTISEMENT

However, according to Brown University researchers, this wasn’t the only time the lunar surface was melted on a massive scale. The Moon, unlike the Earth, has no atmosphere to protect it from meteorite impacts; these impacts are much more frequent and much more violent there. Such is the case with the impact event that formed the Orientale basin on the Moon’s western edge and far side: it produced a “sea” of lava some 350 km (220 miles) across, and almost 10 km (6 miles) deep. Similar processes happened at various times in the Moon’s history in at least 30 other large impact basins.

Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

Microphogoraphs of lunar samples, as seen through cross polarized light.
Microphogoraphs of lunar samples, as seen through cross polarized light.

Vaughan and his colleagues show that as these melt seas cooled, they igneously differentiated in pretty much the same way it did during the Moon’s initial cooling phase, so rocks found there could actually be mistaken for pristine, original ones.

“This work adds the concept of impact melt magma seas to the lexicon of lunar rock-forming processes,” said planetary geologist James W. Head III, the Scherck Distinguished Professor of Geological Sciences and the senior researcher involved in the study. “It emphasizes that one must consider the detailed point of origin of the rocks in order to interpret them correctly.”

Bad thing is, these rocks include the ones brought back by the Apollo project and Russia’s Luna missions. It’s quite possible, the researchers say, that impact melt material is present in lunar samples thought to be representative of the early formation of the lunar crust, which if true, could raise some big question on previous interpretation. If lunar samples do include melt material, it would help to explain some puzzling findings from lunar samples.

ADVERTISEMENT

The thing is, for differentiation to take place, it would have to remain liquid for several thousands of years, which is very likely, when you’re dealing with “seas” as big as the ones described here. The next question was what that differentiation might look like, and how can we determine the composition of the impact melt sea.

“This is a mechanism by which the Moon was later modified to add petrologic complexity,” Vaughan said. “It helps make sense of mineralogical data that doesn’t always fit in this lunar magma ocean idea.”

Tags: impact cratermeteoritemoon geologypetrology
Mihai Andrei

Mihai Andrei

Andrei's background is in geophysics, and he's been fascinated by it ever since he was a child. Feeling that there is a gap between scientists and the general audience, he started ZME Science -- and the results are what you see today.

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.