Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Environment → Animals

300 million year insects pictured in 3D

Mihai Andrei by Mihai Andrei
September 26, 2012
in Animals, Biology, Geology

Researchers managed to construct a three dimensional (3D) portrait of two nymphs that inhabited our planet 305 million years ago by scanning their fossils with X-Rays.

Old insects


At the moment, they are by far the most detailed pictures of juvenile insects that inhabited that period; nymphs are the immature form of some invertebrates, particularly insects, which undergo gradual metamorphosis until they reach their adult stage. Aside from being downright incredible in itself, this achievement is also quite useful for future research, especially as one of the insects belongs to an unknown species and even genus.

This specimen is characterized by sharp spines on its body and head; scientists have named it Anebos phrixos, which is Greek for “young and bristling”, while the other one is quite similar to a modern cockroach. However, the classification is very difficult because their adult stage could have been significantly different from their nymph form.

X-ray tomography

Roach-like insect

The technique used in this case is called X-ray microtomography and it is used to obtain cross-sections of the fossils, each about 2 centimetres long, both found in France, in Montceau-les-Mines Lagerstätte. Then, using these sections, scientists were able to construct accurate 3D models of the insects.

“Fossils of juvenile insects become very uncommon when you go back as far as the Palaeozoic,” says Russell Garwood, a palaeontologist at the University of Manchester, UK, and co-author of the paper. “We hope these images will help scientists to better understand the evolution of insects’ life cycle.”

For now, this provided valuable insight about the lifestyle of these younger insects; the roach-like insect for example has well-preserved mouth parts which suggest it fed off of rotting matter on the bottom of the forest.

“The spikes of Anebos phrixos may be interpreted as an evolutionary strategy to avoid being eaten by early amphibians’ ancestors, which had arrived on land about 70 million years before this insect was born,” adds Garwood.

However, as this method is developed and perfected, we can move on to more complicated matters, and extract even more information – something definitely worth keeping an eye out for.

The world, 305 million years ago

The year is 305 million BC. How does the world look like? We’re nearing the end of the Carboniferous period, the period in which the most coal beds were formed (hence the name). Life, both aquatic and terrestrial is pretty much settled in this period – amphibians rule the land mass, and some of them already start evolving into reptiles. Arthropods are very common, but they are generally much larger than the ones we see today.

However, by now, the Carboniferous Rainforest Collapse (CRC) already took place, as a result of changing climate, from hot and humid to cold and arid – but don’t worry, this will change back a hundred million years from now. In fact, it is this move which will hit deep into the amphibian biodiversity, favoring early reptiles which were much more adaptable, and which will someday go on and become dinosaurs.

Scientific article: Tomographic Reconstruction of Neopterous Carboniferous Insect Nymphs (PLoS One)

Was this helpful?


Thanks for your feedback!

Related posts:
  1. 300 million year old shark nursery found
  2. Almost a spider: Scientists find 300-million year old pre-spider
  3. Paleontologists make gruesome finding about 300-million-year-old shark
  4. Fossil find of 520 million year-old arthropod might be the missing link in insects evolution
  5. Spiders eat up to 800 million tons of insects and pests a year — much more than humanity
Tags: carboniferousx-ray tomography

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW