ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Geology

A new, beautifully detailed geological map of Mars

Geological maps can be awesome here on Earth, but when we have geological maps of extraterrestrial bodies... that's when we get really excited.

Mihai AndreibyMihai Andrei
November 16, 2015
in Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

InSight lander detects mysterious dips in air pressure on Red Planet (and shares Martian weather forecast)
A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before
Fossils Reveal “Beer-Bellied” Dinosaur
Extreme Antarctic fungi survives in Martian habitat, as well as space

Geological maps can be awesome here on Earth, but when we have geological maps of extraterrestrial bodies… that’s when we get really excited.

Astrogeology is about as exciting as a science can get, and in recent years, we’ve been spoiled with thrilling announcements, from water on Mars to plate tectonics on Europa to Pluto’s surprising geology. But once in a while, it’s nice to step back, look at all the data you have and put it all together – and what better way to do that than a map?

Humans have been studying the surface and geology of Mars through telescopes for over 400 years, but it was the Mariner 9 mission and the Viking Orbiter missions that first gave us a global view of the Red Planet and enabled us to create the first geological maps outside of the Earth-Moon system.

But things have gotten even better after that, thanks to The Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions; with a myriad of sensors, they’ve gathered more and more information about the surface of the planet and the characteristics of the minerals that make it.

“These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping,” USGS writes. “In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.”

The map is one of the several revisions that the USGS is doing, including for two of Jupiter’s moons, Ganymede and Io. If you want to see a (much) higher resolution version, with a color scale and explanations, check out this link.

Tags: GeologymapMars

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

First Complete Picture of Nighttime Clouds on Mars

bySarah Stanley
6 days ago
mars
News

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

byJordan Strickler
2 weeks ago
ancient map 400 years old with China at its center
Culture & Society

The 400-Year-Old, Million-Dollar Map That Put China at the Center of the World

byMihai Andrei
3 weeks ago
Geology

NASA finally figures out what’s up with those “Mars spiders”

byMihai Andrei
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.