Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Science News

Extreme Antarctic fungi survives in Martian habitat, as well as space

Researchers at European Space Agency (ESA) collected fungi that live in one of the harshest places on Earth -- McMurdo Dry Valleys, Antarctica -- then shipped some to the ISS. Here, populations were subjected to both a Martian environment and directly exposed to space. In both situations, fungi survived after 18 months though those breeding in the Martian environment proved to be far better adapted. Lichen were also tested under the same circumstances. These too survived, which gives hope that there might be a chance for life on Mars to exist.

Tibi Puiu by Tibi Puiu
January 29, 2016
in News, Space

Researchers at European Space Agency (ESA) collected fungi that live in one of the harshest places on Earth — McMurdo Dry Valleys, Antarctica — then shipped some to the ISS. Here, populations were subjected to both a Martian environment and directly exposed to space. In both situations, fungi survived after 18 months though those breeding in the Martian environment proved to be far better adapted. Lichen were also tested under the same circumstances. These too survived, which gives hope that there might be a chance for life on Mars to exist.

Left: The EXPOSE-E platform was sent on the ISS. Right: the European researchers involved in the study. Image: ESA
Left: The EXPOSE-E platform was sent on the ISS. Right: the European researchers involved in the study. Image: ESA

The European researchers went to the Antarctic Victoria Land a couple years back, and collected specimens belonging to  Cryomyces antarcticus and Cryomyces minteri. These are what scientists class as  cryptoendolithic fungi — microorganisms able to survive in the cracks of rocks, hence they stay “hidden” (crypto).

Section of rock coloniszed by cryptoendolithic microorganisms and the Cryomyces fungi in quartz crystals under an electron microscope. Credit: S. Onofri et al.
Section of rock coloniszed by cryptoendolithic microorganisms and the Cryomyces fungi in quartz crystals under an electron microscope. Credit: S. Onofri et al.

The organisms were placed in tiny cells (1.4 cm in diameter) and shipped to the International Space Station  on a platform for experiments known as EXPOSE-E. The platform was placed  outside the Columbus module with the help of an astronaut from the team led by Belgian Frank de Winne. For 18 months, half the population was exposed unabated to space, while the other half was isolated in a habitat that resembled conditions on Mars. Specifically: 95% CO2, 1.6% argon, 0.15% oxygen, 2.7% nitrogen and 370 parts per million of H2O; and a pressure of 1,000 pascals (1% of that on Earth). Through optical filters, radiation was shot to simulate the environment of Mars.

fungi space
Image: DLR Institute of Aerospace Medicine

About 60% endolithic communities survived in the Martian environment, with DNA still intact. However, less than 10% of the retrieved fungi samples exposed to Martian conditions were capable of proliferating and forming colonies. Only 35% of the fungal cells exposed to space conditions kept their membranes intact.

As part of the experiment, researchers also studied the survivability and proliferation of Rhizocarpon geographicum and Xanthoria elegans. These lichen species can be found in very high-mountain regions, like  Spain’s Sierra de Gredos and Austria’s Alps. Again, half were exposed to space, while the other half lived in a Martian dome. After more than a year and a half, the two species of lichens ‘exposed to Mars’ showed double the metabolic activity of those that had been subjected to space conditions, even reaching 80% more in the case of the species Xanthoria elegans.

Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

The findings published in Astrobiology offer clues that if life ever appeared on Mars, it could still be there. Maybe in the cracks on crevices of Martian rocks, which is why NASA is very careful where it sends its rovers to lower the risk of biological contamination.

Tags: fungiMars
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines.

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.