Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Chemistry

Tracking the origin of life: computer simulation delves inside ‘primordial soup’

Tibi Puiu by Tibi Puiu
September 9, 2014
in Chemistry, News

Early Earth wasn't the most hospitable place in the Universe, but some in all this chaos life emerged. Image credit: Peter Sawyer / Smithsonian Institution.
Early Earth wasn’t the most hospitable place in the Universe, but some in all this chaos life emerged. Image credit: Peter Sawyer / Smithsonian Institution.

One of the most famous chemistry experiments of the last century was the ‘primordial soup’ project initiated by Stanley Miller. The chemist wanted to see what would happen if you mixed methane, ammonia and hydrogen – all substances readily available on Earth before life began – and zapped them with electricity, to create a phenomenon analogous to lightning which would have been pretty frequent during those times. He found that the gaseous mixture turned into a liquid rich with amino acids in a reaction channeled by the electricity. The amino acids are essential to life as we know it since these form proteins when snapped together. So, armed with this fantastic new found knowledge Miller hypothesized that since simple chemicals could be turned into biological molecules in a lab, then something similar may have led to the formation of life on Earth billions of years ago, with some added steps in between of course.

Looking for life in all the right places

Since then, the primordial soup experiment has been repeated countless times with variations as our understanding of the early Earth evolved. For instance, since Miller’s famous first tries in the 1950’s scientists today have made sugars and DNA building blocks, all just by starting from a suit of primordial chemical. It’s still unclear, however, what are the intermediary products and what are mechanics that eventually lead to biomolecules.

[ALSO READ] Diamonds hold the key to primordial life

Unlike Miller, scientists today have access to supercomputers that can keep track of many complicated interdependencies and relationships. Researchers in France used such a supercomputer to model how a couple of primordial chemicals interact and transform when subjected to an electric field of increasing strength. The model tracked the formation of intermediate molecules that eventually turned into glycine, a simple amino acid that often shows up in Miller-type experiments. Before glycine, however, the gases first joined to form formic acid and formamide.

We’re still a long way from being able to make actual life in a lab jar, but these more recent findings definitely help. In their paper, published in the journal Proceedings of the National Academy of Sciences, the scientists also outlined that astronomers might want to look for signs of these chemicals on Earth-like exoplanets – it might give them clues as to where it might be likely to find extraterrestrial life.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Scientists explore the origin of metabolism to reveal secrets of primordial life
  2. It runs in the family: new research delves into how animals perceive color differently, and why
  3. Diamonds hold the key to primordial life
  4. NASA scientists create basic building blocks of life in a ‘primordial ocean’
  5. Computer Simulation shows How Bacteria Resist Antibiotics
Tags: amino acidglycinelifeprimordial soup

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW