ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Origin of life a fluke? Study suggests more’s at play than just randomness

Tibi PuiubyTibi Puiu
October 24, 2013
in Biology, Genetics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit
origin_of_life
(c) University of Texas

One of the greatest mysteries scientists have been trying to reveal is how inanimate chemicals  joined  to produce life. It’s definitely one of the biggest questions scientists are trying to answer, and the challenges are numerous since it’s very difficult to appreciate what the exact conditions necessary for this to happen were billions of years ago. We might never find out what the exact molecules that sprouted life were, but by studying the biomolecules available today, valuable clues emerge. In time, it may be possible to simulate and re-create these conditions.

Pasquale Stano at the University of Roma Tre sought to investigate how biomolecules might have provided one way to trigger life trough a characteristic process known to scientists since the 1980s: self-organization. Previously, a model for the origin life was devised into  a two-stage process of natural chemical evolution:
      1) formation of organic molecules, which combine to make larger biomolecules;
      2) self-organization of these molecules into a living organism.

The simplest “living system” we can imagine, involving hundreds of components interacting in an organized way to achieve energy production and self-replication, would be extremely difficult to assemble by undirected natural process.  And all of this self-organization would have to occur before natural selection (which depends on self-replication) was available, according to Craig Rusbult. Basically, the complexity required for life (the two stage process) is a lot greater than the complexity available by natural process, considering lifeless matter is the starting point. With this in mind, scientists have been trying to devise new models with less requirements while still being viable – no such model has been found thus far, and some believe life as we know it originated as a fluke of nature.

We’re missing something

origin of life lipids liposomes
(C) University of Roma Tre

Stano’s research suggests that we simply don’t know all the variables yet and our model assumptions might be wrong from the get-go. University of Roma scientists chose an assembly comprised of 83 different molecules including DNA, which was programmed to produce a special green fluorescent protein (GFP) that could be observed under a confocal microscope. This assembly can produce proteins, necessary for the formation of life.

To produce proteins, all of these molecules need to be really close together for chemical reactions to occur, which is why cell components are so densely packed together. The researchers diluted the assembly with water, spacing the molecules apart and making protein generation impossible. However, they then added a chemical called POPC; a fatty molecule which isn’t soluble in water and when in contact with water forms liposomes. These have a very similar structure to the membranes of living cells and are widely used to study the evolution of cell. This was made in hope that some of these liposomes would trap the myrriad of molecules required for assembly. Here’s where it gets interesting.

[RELATED] Origin of life needs some serious rethinking 

A computer simulation showed that the chance of even one liposome producing the green fluorescent protein the assembly was programmed for is zero. In their experiment, however, the scientists found that five in every 1,000 such liposomes had all 83 of the molecules needed to produce the protein and glowed in the dark. Stano and colleagues do not yet understand why this happened, but what’s certain is that their model assumptions were wrong and that something unique may be at play.

RelatedPosts

If you want to find your passion, keep a first-person perspective on life
There may be over a million genetic molecules — DNA is just one of them
New breakthrough gets us closer to using DNA as data storage
Million-year-old dormant microbes beneath ocean floor push life to its absolute limits

It may be that these particular molecules are suited to this kind of self-organisation because they are already highly evolved, which is why research into origin of life is so difficult. Research which less complex molecules will follow next to see if the results can be replicated. Nevertheless, their findings described in the journal Angewandte Chemie  provide one more clue and a solid stepping stone for researchers to follow in their quest to answer how life on Earth came to be.

Tags: dnalifeliposomeorigin of life

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Genetics

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

byTibi Puiu
5 days ago
Future

A New AI Tool Can Recreate Your Face Using Nothing But Your DNA

byTibi Puiu
2 weeks ago
Archaeology

The People of Carthage Weren’t Who We Thought They Were

byTibi Puiu
4 weeks ago
Biology

Researchers can’t rule out the possibility of life existing on Titan

byMihai Andrei
1 month ago

Recent news

This Superbug Learned How to Feed on Plastic from Hospitals

May 20, 2025

China’s Tiangong space station has some bacteria that are unknown to science

May 20, 2025

Hidden Communication Devices Found in Chinese-Made Inverters Could Put U.S. Electrical Grid at Risk

May 20, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.