ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Our brains fire up their ‘prediction engine’ when faced with uncertainty — at least with music

They just hate not knowing what’s coming.

Alexandru MicubyAlexandru Micu
August 31, 2021
in Mind & Brain, News, Psychology, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

When listening to music, our brains don’t just sit back and relax. Instead, they get hard to work trying to predict the patterns of the song.

Image via Pixabay.

We know from past research that our brains are surprisingly active when we’re listening to music, much more so than would be the case if they were simply processing the sounds. New research shows that the human brain processes music by analyzing what we’ve already heard, and using that to try to predict what’s coming next.

Music to my ears

“The brain is constantly one step ahead and matches expectations to what is about to happen,” said Niels Chr. Hansen, a fellow at the Aarhus Institute of Advanced Studies and one of two lead authors on the paper. “This finding challenges previous assumptions that musical phrases feel finished only after the next phrase has begun.”

“We only know a little about how the brain determines when things start and end. Here, music provides a perfect domain to measure something that is otherwise difficult to measure — namely, uncertainty.”

The study focused on musical phrases, one of the most basic units of music — if notes are treated as equivalent to individual letters, musical phrases would be words that go together. Musical phrases are made up of a sequence of sounds that together form a distinct element within a larger melody. They’re coherent within themselves, meaning that although they are only a part of a larger melody, they do “make sense” so to speak even when played alone.

The team chose this as the basis for their research particularly because of this property. Being coherent by themselves means that our brains can perceive them as music, but they don’t offer any information about what comes after them, because they’re a full sequence in themselves and do not necessarily impact other phrases in the melody, although they can.

What the team wanted to determine was how our brains react to the uncertainty this creates. Our brains like to look for patterns in the world around us (an inclination they developed while trying to keep us alive in the wild). They worked with 38 participants who were asked to listen to Bach chorale melodies, note by note. They were able to pause and restart the music at will by pressing the spacebar on a computer keyboard and were told that they would be tested afterward to check how well they remembered the melodies. This allowed the researchers to use the time participants dwelled on each tone as an indirect measure of their understanding of musical phrasing.

In a second experiment, 31 participants listened to the same musical phrases and were then asked to rate them on how ‘complete’ they sounded. They rated melodies that ended on high-entropy tones (those with higher uncertainty) to be more complete and tended to listen to them more on average.

“We were able to show that people have a tendency to experience high-entropy tones as musical-phrase endings. This is basic research that makes us more aware of how the human brain acquires new knowledge not just from music, but also when it comes to language, movements, or other things that take place over time,” said Haley Kragness, a postdoctoral researcher at the University of Toronto Scarborough and the paper’s second lead author.

“This study shows that humans harness the statistical properties of the world around them not only to predict what is likely to happen next, but also to parse streams of complex, continuous input into smaller, more manageable segments of information,” adds Hansen.

While studying how our brains interpret music might seem trivial, it feeds into the much wider topic of the mechanisms that allow us to perceive and process the world around us. It might also be valuable for researchers seeking to understand the very foundation of communication between people, as this involves an exchange of information in various forms that our brains may or may not try to interpret and understand in the same ways seen in this study’s participants.

RelatedPosts

New circuitboard is 9,000 times faster and more energy efficient at simulating the human brain than PC
Technique Images Brain Activity When We Think Of Others
Music Acts as a Painkiller — But You Have to Listen at Your Internal Tempo
Can you upload a human mind into a computer? Here’s what a neuroscientist has to say about it

The paper “Predictive Uncertainty Underlies Auditory Boundary Perception” has been published in the journal Psychological Science.

Tags: brainmusic

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Mind & Brain

First Mammalian Brain-Wide Map May Reveal How Intuition and Decision-Making Works

byTudor Tarita
14 hours ago
Mind & Brain

Our Thumbs Could Explain Why Human Brains Became so Powerful

byTibi Puiu
2 weeks ago
Mind and Brain

Do You Think in Words or Pictures? Your Inner Voice Is Actually Stranger Than You Thought

byJoshika Komarla
3 weeks ago
Science

Meet the Robot Drummer That Can Play Linkin Park (and Bon Jovi) Like a Human

byMihai Andrei
4 weeks ago

Recent news

The Evolution of the Human Brain Itself May Explain Why Autism is so Common

September 9, 2025

A Light-Based AI Can Generate Images Using Almost No Energy

September 9, 2025

This 1,700-Year-Old Skull is the First Evidence of a Gladiator Bear in the Roman Empire

September 9, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.