Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Health → Mind & Brain

Musical training makes your brain better at paying attention

Oh so THAT'S what I was missing!

Alexandru Micu by Alexandru Micu
March 27, 2019
in Mind & Brain, News, Science

Musical training won’t just make you cool at get-togethers — it also gives you better control and focus over your attention, new research reports.

Music baby.
Image via Pixabay.

Individuals who train in music see lasting improvements in the cognitive mechanisms that make us more attentive and harder to distract, the study reports. Trained musicians exhibit greater executive control of attention (a main component of the attentional system) than non-musicians, it explains, and this effect increases the longer they train in music.

Professional advantage

“Our study investigated the effects of systematic musical training on the main components of the attentional system. Our findings demonstrate greater inhibitory attentional control abilities in musicians than non-musicians,” explained lead investigator, Paulo Barraza, PhD, Center for Advanced Research in Education, University of Chile, Santiago, Chile.

“Professional musicians are able to more quickly and accurately respond to and focus on what is important to perform a task, and more effectively filter out incongruent and irrelevant stimuli than non-musicians. In addition, the advantages are enhanced with increased years of training.”

Our attention is made up of three types of functions: alerting, orienting, and executive control. The alerting function is associated with maintaining states of readiness for action. The orienting function is linked to the selection of sensory information and change of attentional focus. The executive control function is involved both in the suppression of irrelevant, distracting stimuli and in top-down attentional control. Each is handled by an anatomically-distinct neural network, the team writes.

For the study, the team worked with 18 professional pianists and a matched group of 18 non-musician professional adults, whom they ran through an attentional network test. The musician group consisted of full-time conservatory students or conservatory graduates from Conservatories of the Universidad de Chile, Universidad Mayor de Chile, and Universidad Austral de Chile. On average, participants in this group had over 12 years of practice. “Non-musicians” were university students or graduates who had not had formal music lessons and could not play or read music.

The participants were asked to view a series of rapidly-changing images and provide immediate feedback on what they were being shown to test the efficiency of their reactive behavior. On average, the musician group had a score of 43.84 milliseconds (ms) for alerting functions, 43.70 ms for orienting, and 53.83 ms for executive functions, the team reports. For non-musicians, the mean scores were 41.98 ms, 51.56 ms, and 87.19 ms, respectively. The higher scores show less efficient inhibitory attentional control (i.e. a poorer control of attention).

The authors say their results point to musical training having a lasting (and beneficial) effect on attention networks that previous research didn’t spot.

“Our findings of the relationship between musical training and improvement of attentional skills could be useful in clinical or educational fields, for instance, in strengthening the ability of ADHD individuals to manage distractions or the development of school programs encouraging the development of cognitive abilities through the deliberate practice of music,” says noted co-author David Medina, from the Department of Music, Metropolitan University of Educational Sciences, Santiago, Chile.

“Future longitudinal research should directly address these interpretations.”

The paper ” Efficiency of attentional networks in musicians and non-musicians” has been published in the journal Heliyon.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Paying attention shuts down ‘brain noise’ that isn’t related to what we’re looking for
  2. Musical training doesn’t make you smarter, but that doesn’t mean it’s not important
  3. Genetics may be more important for perfect pitch than musical training
  4. Dogs seem to play more enthusiastically when you’re paying attention to them going at it
  5. Your brain pays more attention to objects it knows are small — no matter how large they seem
Tags: AttentionmusicMusicaltraining

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW