ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Bacteria species, too, can become extinct — and they do so quite often

The findings go against commonly-held wisdom today.

Alexandru MicubyAlexandru Micu
July 30, 2018 - Updated on July 25, 2019
in Biology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Evolution is ruthless even with its tiniest creations.

Bacteria lip print.
Image credits Bnummer / Wikimedia.

New research led by researchers from the University of British Columbia (UBC) reports that bacteria also die off — and they do so at substantial rates. The findings go against the grain of the widely-held notion that bacterial species, owing to their very large populations, rarely go extinct.

To kill a M. ocking bacteria

Bacteria are, by far, one of the most prolific and successful bits of life that evolution spawned on our planet. They’re incredibly hardy, very good at drawing energy from their environments, and they reproduce with a vengeance. These tiny critters are so resilient and numerous, in fact, that most scientists took it as a given that bacteria species very rarely go extinct. However, new research suggests that this isn’t the case.

The team sequenced DNA information from 448,112 different bacterial species and drew on 60 previous environmental studies to create the most comprehensive bacteria evolutionary tree, which includes the majority of bacterial species over the past billion years. To get an idea of bacteria’s evolutionary history, they drew on the traces that speciation (differentiation of new species through evolution) leaves in the genetic makeup of these bacterial lineages.

The team estimates that there are around 1.4 to 1.9 different bacterial phyla (lineages) gracing our planet today. They were also able to estimate how that number varied over time: they report that anywhere between 45,000 to 95,000 phyla became extinct over the last million years.

“Bacteria rarely fossilize, so we know very little about how the microbial landscape has evolved over time,” says Stilianos Louca, lead researcher of the study. “Sequencing and math helped us fill in the bacterial family tree, map how they’ve diversified over time, and uncover their extinctions.”

It’s an impressive number. But, despite these relatively high extinction rates (which the team notes were quite steady over time), bacteria have kept diversifying exponentially throughout history. As a group, they also managed to weather planet-wide mass extinction events — those abrupt events that periodically cull plant and animal species — with very few losses. All in all, while the current number of bacterial lineages today is definitely impressive, “it’s only a tiny snapshot of the diversity that evolution has generated over Earth’s history,” Louca adds.

“This study wouldn’t have been possible 10 years ago,” says Michael Doebeli, senior author of the paper and a UBC mathematician and zoologist. “Today’s availability of massive sequencing data and powerful computational resources allowed us to perform the complex mathematical analysis.”

Next, Louca says he and his team plan to determine how the physiological properties of bacteria evolved over time. A particular point of interest for them is determining whether their ecological diversity has increased in tow with their taxonomic diversity — i.e. if they spread to new types of environments and roles in those environments as the total number of species increased. If so, this would suggest that even organisms as ancient and simple as bacteria can still find new roles in nature.

RelatedPosts

The birth of forests helped drive two massive, ancient extinctions
Virus mutations shows natural selection theory at its best
A deer tooth pendant carries the DNA of a woman from Eurasia
New China virus discovered has alarmingly high mortality rate

The paper “Bacterial diversification through geological time” has been published in the journal Nature ecology and evolution.

Tags: bacteriadnaextinctionlineagespecies

Share13TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Animals

The tragic story of the warrah wolf, a species too friendly to survive

byMihai Andrei
1 week ago
Genetics

UK Families Welcome First Healthy Babies Born With DNA From Three People

byTudor Tarita
3 weeks ago
ozzy osbourne in concert
Genetics

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

byMihai Andrei
4 weeks ago
Biology

Scientists Taught Bacteria to Make Cheese Protein Without a Single Cow

byTudor Tarita
4 weeks ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.