ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Astronomers directly image massive exoplanet in radically new way

Star-mapping data and direct imaging could lead to even more exoplanet discoveries.

Jordan StricklerbyJordan Strickler
April 19, 2023
in News, Research, Science, Space
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit
The new detection method could lead to more exoplanet finds. (Credit: WikiMedia Commons)

For ages, astronomers have been intrigued by the notion of uncovering exoplanets – planets outside our Solar System. Thus far, astronomers have found over 5,300 of them with new discoveries coming in at an astounding rate.

In the quest to locate these elusive entities, two primary techniques have emerged: indirect and direct. While indirect means have historically prevailed, a recent direct imaging approach utilizing the Gaia space observatory has yielded captivating possibilities.

Indirect methods infer exoplanet existence by examining their impacts on their parent stars. These effects include fluctuations in position or brightness, unveiling the presence of a planet orbiting around the star. This approach has been highly successful, with most exoplanets detected by astronomers using these means.

Direct imaging, on the other hand, involves actually seeing the planet via telescopes such as the Hubble or Keck Observatory. This technique provides information such as the composition of atmospheres around planets and their temperatures but has been more demanding due to the requirement for the planet to be substantially more massive than Jupiter, the largest planet in our Solar System, and considerably separated from its parent star. To date, only about 20 exoplanets have been captured through direct imaging.

A massive alien planet 15 times larger than Jupiter

However, an international team of astronomers was able to discover another exoplanet by using a combination of both. The group used the Gaia mission to search for stars that “wobble” in the sky. They then leveraged the Hipparcos-Gaia Catalogue of Accelerations, a database combining data from Gaia’s star-mapping missions, which provides a 25-year baseline for comparing precise star positions, known as astrometry.

Using this database, astronomers spotted several stars that seemed to alter position in the night sky in a manner suggesting the presence of a giant planet orbiting each one. They then employed the Subaru Telescope on Mauna Kea, Hawaii, and gathered data using the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument coupled with the Coronagraphic High-Resolution Imager and Spectrograph (CHARIS) instrument.

The outcome was the discovery of HIP 99770 b, located some 132 light-years away. This planet is more than 15 times the mass of Jupiter and orbits a star almost twice as massive as the Sun.

RelatedPosts

Odd Jupiter-sized exoplanet is hot enough to melt metal but paradoxically pitch-black
Newly discovered “super-Earth” planet might support life
Water worlds may be much more common in the universe than we thought
Earth-like planets closer than previously thought. Nearest one might lie 13 light-years away
HIP 99770 b (circled) is seen orbiting its host star in these images captured by the Subaru Telescope. Data from Europe’s Gaia star-mapping spacecraft indicated the probable presence of the large exoplanet. Credit: T. Currie (Subaru/UTSA)

“(The find) demonstrates that an indirect method sensitive to a planet’s gravitational pull can tell you where to look and exactly when to look for direct imaging,” said lead study author Thayne Currie, based at the National Astronomical Observatory of Japan in Hilo, Hawaii and the University of Texas-San Antonio. “So, I think that’s really exciting.”

Although the planet’s orbit is more than three times larger than Jupiter’s orbit around the Sun, it receives nearly the same amount of light since its host star is far more luminous than the Sun.

“This is sort of a test run for the kind of strategy we need to be able to image an Earth,” Currie said.

This newly developed approach of using astrometry to identify stars with planets has the potential to significantly increase the number of exoplanets imaged directly. Rather than blindly targeting stars, astronomers can now focus their search on stars more likely to have planets, increasing their chances of success.

Tags: exoplanetGaiaHIP 99770b

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

News

Distant Exoplanet Triggers Stellar Flares and Triggers Its Own Destruction

byKimberly M. S. Cartier
1 week ago
Astronomy

The James Webb telescope just found a planet by actually ‘seeing’ it

byMihai Andrei
2 months ago
News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
2 months ago
News

A Planet 900 Light-Years Away Has Weather So Extreme “It Feels Like Science Fiction”. It’s 70,000 km/h Winds Carry Vaporized Iron and Even Titanium

byTibi Puiu
6 months ago

Recent news

GPT-5 is, uhm, not what we expected. Has AI just plateaued?

August 15, 2025

Human Hair in 500-Year-Old Knotted Cord Rewrites What We Knew About Literacy in the Inca Empire

August 14, 2025

Up To 6 Percent Of Wild Australian Birds Appear To Be Switching Sexes And Scientists Think Pollution Could Be To Blame

August 14, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.