Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Why is the solar system flat and not a sphere?

Elementary, it's all about the conservation of angular momentum.

Tibi Puiu by Tibi Puiu
September 11, 2020
in News, Physics, Space

Given that space is tridimensional, it can seem odd that many cosmic objects arrange themselves in the same plane. Take our solar system for instance, where the planets orbit the sun in the same plane instead of being distributed in a spherical configuration. This holds true on both small and astronomical scales. Saturn’s rings are arranged in a disc shape in the same plane with the planet’s center of mass. Asteroid belts are also flat and so are most galaxies.

In short, this pattern can be explained by a fundamental law of physics: the conservation of angular momentum. Angular momentum is the rotational analog of linear momentum and is defined as the product of its moment of inertia and its angular velocity.

[panel style=”panel-warning” title=”The law of conservation of angular momentum” footer=””]The law of conservation of angular momentum states that when no external torque acts on an object, no change of angular momentum will occur. If the net torque is zero, then angular momentum is constant or conserved.

It’s the conservation of angular momentum that can explain why an ice skater can increase the angular acceleration by bringing her arms and legs close to the vertical axis of rotation. Because the moment is conserved, when the skater decreases the rotational inertia, the rotation rate must increase.

Credit: Boundless.
Credit: Boundless.

[/panel]

Why the solar system is (almost) flat

Credit: NASA/JPL.
Credit: NASA/JPL.

How does all this relate to the flatness of the solar system more exactly? Some 4.6 billion years ago, there was no planet Earth and the Sun had yet to form. Instead, a huge blob of gas and dust floated about for millions of square miles.

Attracted by gravity, particles of matter gradually moved closer eventually resulting in collisions. Whenever some particles collide, their new trajectories are random but although the new direction is impossible to predict the angular momentum must remain constant in an isolated system because the local gravitational effect of other bodies is negligible.

The angular momentum is a physical quantity that’s constant around a fixed axis, which is a point in a 2-D space and a line in 3-D space. This means the system rotates along a plane that’s perpendicular to this axis. In our particular case, the solar system, this means that when all that primordial gas and dust started to collide, the particles could move in any direction but all the up and down motions phased each other out. In time, the particles lose their freedom to move across all planes except a select 2D plane.

Because all that matter formed a disk, all in a plane, all of the planets formed in a plane as well. Were it not for the law of conservation of angular momentum, it would have been impossible for stars and planets to form. Our very existence is tied to this fundamental law of physics.

As a caveat, we must note that the solar system isn’t perfectly flat. Pluto, the dwarf planet, has an orbital inclination of about 17 degrees relative to the plane of the solar system and right at the center of nearly all galaxies lies a large bulge although 98% of the stars in a galaxy orbit inside spiral arm filaments around the center of the galaxy. Aside from these oddities, the solar system is pretty tidily arranged in the same plane.

Other solar systems can be even flatter. In a study published The Monthly Notices of the Royal Astronomical Society, scientists modeled the solar systems detected by the Kepler Space Telescope and found most of these are shaped like our solar system. Even the now-famous TRAPPIST-1 planetary system, which has 7-Earth like planets only 39 light-years away, is almost perfectly flat.

“The wealth of the Kepler planet data allows for the first time detailed studies of planet systems outside the solar system. We are now able to ask and answer questions like, how common are planet systems like our own?” Tim Bovaird, a researcher at ANU the lead author of the new study, said in a press release.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. A flat-earther brought a spirit level on a plane to prove the Earth is flat. Yeah…
  2. Okinawa Flat Belly Tonic Reviews – Ingredients, Benefits, Side Effects & Customer Reviews of Okinawa Flat Belly Tonic Drink
  3. Could we use a Dyson sphere to harvest energy around a black hole?
  4. Why does electricity hum — and why is it a B flat in the US, and a G in Europe?
  5. The Earth is flat out spherical — here’s why, and why we’re sure
Tags: angular monentumsolar system

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW