ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

New SARS-like virus can jump directly to humans from bats

A virus similar to SARS has been identified in Chinese horseshoe bats that may be able to infect humans without prior adaptation. Overcoming this genetic barrier could be the first step for an outbreak, according to a study at the University of North Carolina at Chapel Hill.

Alexandru MicubyAlexandru Micu
March 16, 2016
in Biology, Discoveries, Diseases, Health, News, Research, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

A virus similar to SARS has been identified in Chinese horseshoe bats that may be able to infect humans without prior adaptation. Overcoming this genetic barrier could be the first step for an outbreak, according to a study at the University of North Carolina at Chapel Hill.

The newly identified virus, known as WIV1-CoV, could bind to the same receptors as SARS-CoV.
Image credits CDC/Dr. Fred Murphy

In the wake of the recent Zika and Ebola outbreaks which claimed thousands of lives and cost billions in forgone economic development, a team led by Ralph Baric, Ph.D., professor of epidemiology at UNC’s Gillings School of Global Public Health warns of a new, and just as dangerous, virus.

“The capacity of this group of viruses to jump into humans is greater than we originally thought,” said Vineet Menachery, Ph.D., the study’s first author.

“While other adaptations may be required to produce an epidemic, several viral strains circulating in bat populations have already overcome the barrier of replication in human cells and suggest reemergence as a distinct possibility.”

Baric and Menachery used coronavirus sequences obtained from Chinese horeshoe bats, in which SARS also originated. From them, they reconstructed the virus and tested it to see its potential to infect human and mouse cells. The newly discovered virus, which the team dubbed WIV1-CoV, could bind to the same receptors as SARS-CoV; in essence, allowing it to infect the same types of cells. The virus also replicated quickly and efficiently in cultured human airway tissue cells, suggesting it can jump directly to humans from bats.

“To be clear, this virus may never jump to humans, but if it does, WIV1-CoV has the potential to seed a new outbreak with significant consequences for both public health and the global economy,” said Vineet.

Due to a slightly different genetic make-up, SARS vaccines don’t provide protection against it. The good news however is that the antibodies we’ve developed to fight SARS were really good at killing WIV1-CoV in both human and animal tissue samples — giving us a powerful treatment option in case of an outbreak. The only limiting factor when using antibodies, as Ebola treatment ZMapp showed, is quantity; producing antibodies takes time and resources, and if the number of infected runs out of check there won’t be enough to go around.

When SARS (severe acute respiratory syndrome) was first seen in an outbreak in 2002 it spread to nearly 8,000 people, causing almost 800 deaths. It can spread through airborne contact, and in the early stages its symptoms resemble a dry-cough flu; but it can develop rapidly, causing pneumonia, filling of the lungs with fluid and wreaking havoc on the immune system. Baric and his team believe that WIV1-CoV has the potential to induce similar results with proper adaptation to humans.

“This type of work generates information about novel viruses circulating in animal populations and develops resources to help define the threat these pathogens may pose to human populations,” Baric said.

“It’s important to note that it’s not an approach that’s limited to SARS or SARS-like viruses. It can be applied to other emerging pathogens to helping us prepare for the next emergent virus, whether it be MERS, the Zika virus or something we haven’t even heard of yet.”

According to the Centers for Disease Control and Prevention, SARS’ mortality rate can range from less than one percent in patients below 24 years old to more than 50 percent in patients aged 60 and older.

The full paper, titled “SARS-like WIV1-CoV poised for human emergence” has been published online in the journal PNAS and can be read here.

RelatedPosts

Did China just copy SpaceX’s Starship?
China is unbeatable when it comes to EVs. Here’s what Europe and the US can learn
China releases carbon emissions report in light of upcoming UN climate event
China builds nuclear plant that can’t meltdown
Tags: batschinaSARSvirusWIV1-CoV

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

The World’s Largest Solar Plant is Rising in Tibet. It’s So Vast It’s the Size of Chicago

byTibi Puiu
2 weeks ago
Health

Some People Are Immune to All Viruses. Scientists Now Want To Replicate This Ability for a Universal Antiviral

byTibi Puiu
4 weeks ago
Biology

Scientists discover a giant virus in the Pacific with the longest tail ever recorded

byTudor Tarita
4 weeks ago
Health

This mRNA HIV Vaccine Produces the Virus-Fighting Antibodies That Have Eluded Researchers for 40 Years

byTudor Tarita
1 month ago

Recent news

Pluto’s Moons and Everything You Didn’t Know You Want to Know About Them

September 11, 2025 - Updated on September 12, 2025

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

September 11, 2025

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

September 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.