ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

New SARS-like virus can jump directly to humans from bats

A virus similar to SARS has been identified in Chinese horseshoe bats that may be able to infect humans without prior adaptation. Overcoming this genetic barrier could be the first step for an outbreak, according to a study at the University of North Carolina at Chapel Hill.

Alexandru MicubyAlexandru Micu
March 16, 2016
in Biology, Discoveries, Diseases, Health, News, Research, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

A virus similar to SARS has been identified in Chinese horseshoe bats that may be able to infect humans without prior adaptation. Overcoming this genetic barrier could be the first step for an outbreak, according to a study at the University of North Carolina at Chapel Hill.

The newly identified virus, known as WIV1-CoV, could bind to the same receptors as SARS-CoV.
Image credits CDC/Dr. Fred Murphy

In the wake of the recent Zika and Ebola outbreaks which claimed thousands of lives and cost billions in forgone economic development, a team led by Ralph Baric, Ph.D., professor of epidemiology at UNC’s Gillings School of Global Public Health warns of a new, and just as dangerous, virus.

“The capacity of this group of viruses to jump into humans is greater than we originally thought,” said Vineet Menachery, Ph.D., the study’s first author.

“While other adaptations may be required to produce an epidemic, several viral strains circulating in bat populations have already overcome the barrier of replication in human cells and suggest reemergence as a distinct possibility.”

Baric and Menachery used coronavirus sequences obtained from Chinese horeshoe bats, in which SARS also originated. From them, they reconstructed the virus and tested it to see its potential to infect human and mouse cells. The newly discovered virus, which the team dubbed WIV1-CoV, could bind to the same receptors as SARS-CoV; in essence, allowing it to infect the same types of cells. The virus also replicated quickly and efficiently in cultured human airway tissue cells, suggesting it can jump directly to humans from bats.

“To be clear, this virus may never jump to humans, but if it does, WIV1-CoV has the potential to seed a new outbreak with significant consequences for both public health and the global economy,” said Vineet.

Due to a slightly different genetic make-up, SARS vaccines don’t provide protection against it. The good news however is that the antibodies we’ve developed to fight SARS were really good at killing WIV1-CoV in both human and animal tissue samples — giving us a powerful treatment option in case of an outbreak. The only limiting factor when using antibodies, as Ebola treatment ZMapp showed, is quantity; producing antibodies takes time and resources, and if the number of infected runs out of check there won’t be enough to go around.

When SARS (severe acute respiratory syndrome) was first seen in an outbreak in 2002 it spread to nearly 8,000 people, causing almost 800 deaths. It can spread through airborne contact, and in the early stages its symptoms resemble a dry-cough flu; but it can develop rapidly, causing pneumonia, filling of the lungs with fluid and wreaking havoc on the immune system. Baric and his team believe that WIV1-CoV has the potential to induce similar results with proper adaptation to humans.

“This type of work generates information about novel viruses circulating in animal populations and develops resources to help define the threat these pathogens may pose to human populations,” Baric said.

“It’s important to note that it’s not an approach that’s limited to SARS or SARS-like viruses. It can be applied to other emerging pathogens to helping us prepare for the next emergent virus, whether it be MERS, the Zika virus or something we haven’t even heard of yet.”

According to the Centers for Disease Control and Prevention, SARS’ mortality rate can range from less than one percent in patients below 24 years old to more than 50 percent in patients aged 60 and older.

The full paper, titled “SARS-like WIV1-CoV poised for human emergence” has been published online in the journal PNAS and can be read here.

RelatedPosts

Researchers zero in on why older people are more vulnerable to influenza — and maybe other infections as well
Chinese fishing fleet threatens Galapagos wildlife
Futuristic planned tower in China would feature 99 floating islands
New Bombali Ebola Virus Found in Bats
Tags: batschinaSARSvirusWIV1-CoV

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

ancient map 400 years old with China at its center
Culture & Society

The 400-Year-Old, Million-Dollar Map That Put China at the Center of the World

byMihai Andrei
2 days ago
News

Nearly Three-Quarters of New Solar and Wind Projects Are Being Built in China

byRhett Ayers Butler
3 days ago
Biology

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

byTudor Tarita
4 weeks ago
Future

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

byTibi Puiu
1 month ago

Recent news

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

July 31, 2025

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren’t They In Your Phones and Cars Yet?

July 30, 2025

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

July 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.