ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → World Problems

Sweet seagrass is saving oceans and reversing climate change — but we’re killing these gentle habitats

The seagrass rhizosphere is filled with insane amounts of sugar.

Rupendra BrahambhattbyRupendra Brahambhatt
May 5, 2022
in Environmental Issues, News, Oceanography, Research, Studies, World Problems
A A
Share on FacebookShare on TwitterSubmit to Reddit

Seagrass meadows are among the most important ecosystems on our planet. According to an estimate, about 50 million tiny invertebrates and 40,000 fish can thrive in just one acre of seagrass. Moreover, these underwater plants absorb 10% of the total carbon that deposits in the oceans annually and play an important role in reversing climate change. But they’re also one of the most overlooked ecosystems on the planet. Some researchers want to change that.

Image credits: Benjamin L. Jones/Unsplash

Scientists have known for a long time that soil microbes are involved in the terrestrial sequestration of carbon, but not much is known about the interaction that takes place between seagrass and rhizosphere (the oceanic substrate) in terms of carbon storage.

Recently, a team of researchers from the Max Planck Institute for Marine Biology in Bremen, Germany, has published a study that reveals the presence of large amounts of sucrose in the rhizosphere that stores millions of tons of carbon. 

Sweetness below the surface

According to the researchers, there is so much sucrose underneath the seagrass meadows that if it degrades, it will emit the same amount of CO2 that is released by more than 300,000 cars each year. These findings are also surprising because microbes in the rhizosphere are expected to degrade sugar — but there must be something in the seagrass rhizosphere that is inhibiting the microbial activity. So what is it?  

Lead author Maggie Sogin and her team collected water samples (porewaters) from seagrass meadows in the Mediterranean, Baltic, and Caribbean seas. They analyzed the porewater that also included sediments from the seagrass rhizosphere and came across very high levels of sucrose in samples that were taken around the seagrass roots. Their findings suggested that sucrose weighing between 0.67 to 1.34 trillion grams is present in the upper 30 cm seagrass sediments. 

So basically, seagrass rhizosphere contains more than one million tons of sucrose globally — that’s the equivalent of 32 billion cans of coke. 

Image credits: Benjamin L. Jones/Unsplash

During the analysis, researchers also discovered that sucrose-degrading genes were found in 80% of microbial genomes. However, only 64% of genomes could express those genes, which leaves about a third that can’t degrade sucrose. The analysis further revealed that seagrass release phenolic compounds that inhibit most of the microbial activity in the seagrass rhizosphere. Under low oxygen levels, these compounds prevent the microbial degradation of sucrose and favor its accumulation in large quantities underneath the meadows.

RelatedPosts

No, chocolate isn’t going extinct in 40 years — but we are set for a crisis
Antarctic ‘living sensors’ indicate global warming affecting ocean circulation
The ultra-rich and ultra-polluting: Richest 1% emit as much greenhouse gas as two-thirds of mankind
Drought may be a big problem in decades to come

Therefore, the sucrose in the seagrass rhizosphere neither breaks down into CO2  nor does it ever return to the atmosphere. 

“We spent a long time trying to figure this out. What we realized is that seagrass, like many other plants, release phenolic compounds to their sediments. Red wine, coffee and fruits are full of phenolics, and many people take them as health supplements. What is less well known is that phenolics are antimicrobials and inhibit the metabolism of most microorganisms,” said lead author Maggie Sogin.

How does seagrass happen to have so much sugar?

As compared to vegetation on land, seagrass holds twice the amount of carbon per square kilometer. Plus, it sinks carbon 35 times faster than forests on land. The high amounts of sucrose underneath the seagrass play a key role in this carbon management. Researchers have also noticed that sucrose concentration in the seagrass meadows has gone up 80 times since the last time it was measured. So where does all this sucrose come from?

Sucrose is produced by seagrass using photosynthesis, and its production depends on the amount of light that reaches the meadows. For instance, during the daytime when seagrass receives a good amount of sunlight, sucrose is produced in large quantities. Seagrass uses a considerable amount of sucrose for its own growth and the rest is sent to its rhizosphere.  

In an interview with Verve Times, Nicole Dubilier, Director at the Max Planck Institute for Marine Microbiology explains that seagrass is basically suffering from success, producing more useful things than it can consume:

“Under average light conditions, these plants use most of the sugars they produce for their own metabolism and growth. But under high light conditions, for example, at midday or during the summer, the plants produce more sugar than they can use or store. Then they release the excess sucrose into their rhizosphere. Think of it as an overflow valve.”

Unfortunately, seagrass meadows that hold great importance for our ecosystem, oceans, and climate are currently struggling for their existence. A report reveals that due to excessive fishing, water pollution, and lack of conservation efforts, every 30 minutes, the oceans are losing seagrass coverage of the size of a football stadium. According to a 2021 study, the UK alone has lost more than 90% of its seagrass meadows and these habitats are also vanishing fast around places like Florida, Indonesia, and Singapore.

If such trends continue, then we might see extra carbon emissions amounting up to one billion metric tons a year – this is roughly twice the amount of carbon emitted annually by countries like France and Italy. Therefore, governments, environment protection agencies, and policymakers are required to take strong decisions to ensure seagrass protection globally.

Tags: climate changeocean worldseagrass

ShareTweetShare
Rupendra Brahambhatt

Rupendra Brahambhatt

Rupendra Brahambhatt is an experienced journalist and filmmaker covering culture, science, and entertainment news for the past five years. With a background in Zoology and Communication, he has been actively working with some of the most innovative media agencies in different parts of the globe.

Related Posts

Climate

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

byMihai Andrei
1 week ago
Champiñón Hongos Naturaleza Setas Reino Fungi
Animal facts

What do Fungi, Chameleons, and Humans All Have in Common? We’re all Heterotrophs

byShiella Olimpos
4 weeks ago
Climate

Climate Change Is Rewriting America’s Gardening Map and Some Plants Can’t Keep Up

byGrace van Deelen
1 month ago
Climate

Scientists Create “Bait” to Lure Baby Corals Back to Dying Reefs

byMihai Andrei
1 month ago

Recent news

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025

The world’s oldest boomerang is even older than we thought, but it’s not Australian

June 27, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.