Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Health → Diseases

Virus steals bacteria immune system and kills it

Tibi Puiu by Tibi Puiu
July 25, 2019
in Diseases, Health, Studies

Researchers at Tufts University School of Medicine came across a particular strain of bacteriophage – a virus that infects and replicates within bacteria – that had stolen the functional immune system of the cholera bacteria.  The virus used the bacteria’s immune system against it to replicate and eventually kill the bacteria. The findings hint to the prospect of developing new phage therapies against bacterial diseases like cholera.

The cholera bacteria.
The cholera bacteria.

Until now, scientists have never witnessed this kind of behavior before which has prompted them to believe that phages – typically regarded as primitive particles of DNA or RNA – lack the necessary sophisticated mechanisms to develop an adaptive immune system, which is a system that can respond rapidly to a nearly infinite variety of new challenges.

Andrew Camilli, Ph.D., of Tufts University School of Medicine and also the lead author of the present study, came by the discovery by accident while analyzing DNA sequences of phages collected from stool samples of diseased cholera patients in Bangladesh.  It was then that he identified genes that expressed a functional immune system previously found only in some bacteria.

Each phage is parasitically mated to a specific type of bacteria, and the one for the cholera bacteria is called Vibrio cholerae. Surprised by the atypical genes in the virus, Camilli used phage lacking the adaptive immune system to infect a new strain of cholera bacteria that is naturally resistant to the phage. As expected, the phage failed to penetrate the bacteria, however, when the bacteria were infected with this new strain, the phage rapidly adapted and thus gained the ability to kill the cholera bacteria. This proves that the virus has the necessary tools to adapt and kill the bacteria.

“Virtually all bacteria can be infected by phages. About half of the world’s known bacteria have this adaptive immune system, called CRISPR/Cas, which is used primarily to provide immunity against phages. Although this immune system was commandeered by the phage, its origin remains unknown because the cholera bacterium itself currently lacks this system. What is really remarkable is that the immune system is being used by the phage to adapt to and overcome the defense systems of the cholera bacteria. Finding a CRISPR/Cas system in a phage shows that there is gene flow between the phage and bacteria even for something as large and complex as the genes for an adaptive immune system,” said Seed.

“The study lends credence to the controversial idea that viruses are living creatures, and bolsters the possibility of using phage therapy to treat bacterial infections, especially those that are resistant to antibiotic treatment,” said Camilli, professor of Molecular Biology & Microbiology at Tufts University School of Medicine and member of the Molecular Microbiology program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts University.

Phages have been found to be highly prevalent in stool samples infected with bacteria, and since a strain capable of hosting an adaptive immune system was encountered, it seems highly likely that it came naturally. The team is currently working on a study to understand precisely how the phage immune system disables the defense systems of the cholera bacteria, such that effective phage therapies might be developed.

The findings were reported in the journal Nature.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Zika virus might cross from mother to fetus by hiding in immune cells
  2. New species of sea slug steals algae chlorophyll to live a solar-powered lifestyle
  3. Meet the Corpse Flower that steals genes and produces heat to attract flies
  4. Genetically engineered virus kills liver cancer and significantly prolongs life
  5. We’ve identified a gene variant that seems to make people immune to the effects of COVID — but not to catching the virus
Tags: bacteriabacteriophagecholeraimmune system

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW