Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • ZME & more
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
Home Health

Bacteria clogging of medical devices is more serious than previously thought

by Tibi Puiu
March 4, 2013
in Health, Studies
Share on FacebookShare on TwitterSubmit to Reddit

A team of researchers at Princeton University have devised an experimental set-up that closely mimics the flow of bacteria through working medical devices. Their findings show that bacteria clog medical devices extremely fast – much faster than previously thought – and warrant new strategies and designs in order to counter machine failure.

The researchers used time lapse cameras to monitor fluid flow in narrow tubes or pores sim­i­lar to those used in water fil­ters and med­ical devices. What’s important to note is that the scientists used pressure driven fluid and rough tube surface, instead of stationary liquid and smooth surface, in order to mirror as closely as possible natural occurring conditions.

The microbes join to cre­ate slimy rib­bons that tan­gle and trap other pass­ing bac­te­ria, cre­at­ing a full block­age in a star­tlingly short period of time. (c) Princeton University
The microbes join to cre­ate slimy rib­bons that tan­gle and trap other pass­ing bac­te­ria, cre­at­ing a full block­age in a star­tlingly short period of time. (c) Princeton University

A number of bacteria commonly found in clogged devices were introduced in the experiment, and were observed over a period of 40 hours. The researchers dyed the microbes green in order to better monitor them. What they found, however, took them by surprise. The microbes steadily attached themselves to the walls of the narrow tube and began to multiply, eventually forming a slimy layer of coating called a biofilm.

Additional microbes, this time dyed red, were introduced and, naturally, these too adhered to the walls surface, where they stuck to the biofilm. During this time, however, fluid flow wasn’t considerably disrupted. Some 55 hours in the experiment,  the biofilm stream­ers tan­gled with each other and formed a sort of net-like structure that progressively trapped more and more bacteria as the snare became larger. Within an hour, the entire tube became blocked and the fluid flow stopped.

“For me the sur­prise was how quickly the biofilm stream­ers caused com­plete clog­ging,” said  Howard Stone, Princeton’s Don­ald R. Dixon ’69 and Eliz­a­beth W. Dixon Pro­fes­sor of Mechan­i­cal and Aero­space Engineering.. “There was no warn­ing that some­thing bad was about to happen.”

So in less than 60 hours of operation, their set-up had become clogged, much sooner and more devastating then anyone would have ever thought. The Princeton scientists’ work, published in the journal  Pro­ceed­ings of the National Acad­emy of Sci­ences, shows how easily susceptible water and soil filter or, most importantly, medical devices are to clogging in the face of flowing bacteria.

ALSO READ:  A high risk of heart disease is linked to depression -- and treating one could also help with the other

 

Tags: bacteriamedical technology

ShareTweetShare
ADVERTISEMENT
ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • ZME & more

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • ZME & more
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.