ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research

New silicon chip technology amplifies light using sound waves

A whole new world of signal processing may be just around the corner.

Alexandru MicubyAlexandru Micu
June 14, 2016 - Updated on June 15, 2016
in Electronics, News, Research, Science, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

A whole new world of signal processing may be just around the corner. Yale scientists have developed a method of boosting the intensity of light waves on a silicon microchip using only sound.

A Yale team has found a way to amplify the intensity of light waves on a silicon microchip using only sound.
Image credit: Yale University

The paper, published in the journal Nature Photonics, describes a novel waveguide system that has the ability to control the interaction between sound and light waves. The system could form the foundation of a host of powerful new signal-processing technologies starting from the humble (and widely-used) silicon chip.

And this is one of the most exciting selling points of this technology: silicon chips are ubiquitous in today’s technology.

RelatedPosts

Scientists completely halt light for a record-breaking minute
How sound frequencies affect taste – will music replace sugar in your coffee?
Scientists just turned light-based information into readable soundwaves
What, really, is the speed of sound?

“Silicon is the basis for practically all microchip technologies,” said Rakich, assistant professor of applied physics and physics at Yale and lead author of the paper. “The ability to combine both light and sound in silicon permits us to control and process information in new ways that weren’t otherwise possible.”

“[The end result] is like giving a UPS driver an amphibious vehicle — you can find a much more efficient route for delivery when traveling by land or water.”

The advantages of integrating such a technology into a silicon chip were sought-after by numerous groups around the world, but with little success. Previous attempts just weren’t efficient enough for practical applications. The Yale group’s breakthrough came by using a new design that prevents light and sound from escaping the circuits.

“Figuring out how to shape this interaction without losing amplification was the real challenge,” said Eric Kittlaus, a graduate student in Rakich’s lab and the study’s first author. “With precise control over the light-sound interaction, we will be able to create devices with immediate practical uses, including new types of lasers.”

The system is part of a larger body of research the Rakich lab has conducted over the past five years, focused on designing new microchip technologies for light. Its commercial applications range over areas including communications and signal processing.

“We’re glad to help advance these new technologies, and are very excited to see what the future holds,” said Heedeuk Shin, a former member of the Rakich lab, now a professor at the Pohang University of Science and Technology in Korea and one of the study’s co-authors.

Tags: amplificationchiplightsound

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Inventions

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

byMihai Andrei
7 hours ago
News

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

byTibi Puiu
1 month ago
Mind & Brain

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

byTibi Puiu
2 months ago
News

Why Warmer Countries Have Louder Languages

byTibi Puiu
2 months ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.