ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Discoveries

P7C3: a chemical to make brain cells grow (possible cure for Alzheimer)

Tibi PuiubyTibi Puiu
July 9, 2010
in Discoveries, Health, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

What’s killing people around the world
Cash 4 Weight Loss programme shown to work and make people excited about exercise
Living near pubs, bars, and fast-food restaurants is bad for your heart
Unprocessed plant-based food keeps your heart healthier at any age
1-mentaldeclin
(c) Andrew Pieper, M.D., Ph.D., UT Southwestern Medical Center

A group of scientists from the University of Texas Southwestern Medical Center discovered a new chemical compound that helps newborn neurons grow into mature brain cells called P7C3. This particular chemical makes new neurons grow in the part of the brain that is integral to learning and memory! This means the research, funded in part by the National Institutes of Health, might lead to a treatment for Alzheimer’s disease thanks to P7C3’s neuroprotective mechanism.

The discovery was made after researchers infused lab mice with 1,000 different chemicals into their brains, systematically. “It was blind luck,” bluntly admit the researchers from the University of Texas Southwestern (UTS).

“This neuroprotective compound, called P7C3, holds special promise because of its medication-friendly properties,” explained Steven McKnight, Ph.D., who co-led the research with Andrew Pieper, M.D., Ph.D., both of University of Texas Southwestern Medical Center, Dallas. “It can be taken orally, crosses the blood-brain barrier with long-lasting effects, and is safely tolerated by mice during many stages of development.”

Various tests were made to see whether P7C3 can actually help stimulate the growth of new neurons, as well as the preservation of old neurons (this could in turn help aging people cope with dying brain cells). Researchers tested the chemical on mice carrying a genetic mutation that renders them almost completely incapable of producing new neurons in the dentate gyrus region – a perfect candidate. What happened next? Well, not only did new neurons form, but electrophysiological recordings also showed that processing in the dentate gyrus had been restored. “Sure enough, we had evidence that you can actually create new neurons that work,” McKnight said.

“This striking demonstration of a treatment that stems age-related cognitive decline in living animals points the way to potential development of the first cures that will address the core illness process in Alzheimer’s disease,” said NIMH Director Thomas Insel, M.D.

P7C3 is indeed a truly remarkable discovery, but scientists still know very little about how P7C3 works exactly, but further years of research and tests will follow, and a miracle drug might finally be developed. [via physorg.com]

Tags: Alzheimerbrain cellshealthmiceneuronsp7c3

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

AI Can Hear Cancer in the Voice Before Doctors Can Detect It

byMihai Andrei
4 days ago
Health

7,000 Steps a Day Keep the Doctor Away

byTudor Tarita
3 weeks ago
Health

Scientists transform flossing into needle-free vaccine

byTudor Tarita
3 weeks ago
Mind & Brain

The Brain May Make New Neurons in Adulthood and Even Old Age

byTibi Puiu
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.