ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Inventions

New MRI technique allows 3-D imaging of non-living material

Tibi PuiubyTibi Puiu
March 20, 2012
in Health, Inventions, Research, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers at Yale University have successfully mange to utilize a novel MRI technique to 3-D image the insides of hard and soft solids, like bone and tissue, opening the way for a new array of applications, like previously difficult to image dense objects.

 The interior spongy bone of a rabbit femoral head. (c) Yale University Typically, magnetic resonance imaging (MRI) can produce a 3-D image of an object by using an array of powerful magnets and bursts of radio waves which target hydrogen atoms in the respective object. These hydrogen atoms absorb the radio waves, and then emit them back, revealing their precise location. A computer then interprets these signals and “paints” a picture. It’s a very simple, yet highly productive technique, which is why MRI is so popular, especially in the medical field. However, it’s greatest disadvantage is that it needs a lot of hydrogen to read an object, and as such it only works on water-rich materials, like flesh or the human brain. Bones, very tough materials, rocks or basically almost anything that’s non-living can’t be imaged through MRI, until so far at least.

The Yale scientists have developed a new method for MRI imaging, which they call “quadratic echo MRI of solids,” that works by targeting phosphorus atoms instead of hydrogen atoms. A more complicated sequence of radio waves pulses are fired for them to interact with phosphorus, a fairly abundant element in many biological samples, allowing for high-spatial-resolution imaging.

In the paper published recently in the journal PNAS, the Yale team report on various experiments designed to generated 3D MRIs using the phosphorus technique. They thus performed high-resolution 3D images of ex vivo animal bone and soft tissue samples, including cow bone and mouse liver, heart, and brains.

“This study represents a critical advance because it describes a way to ‘see’ phosphorus in bone with sufficient resolution to compliment what we can determine about bone structure using x-rays,” said Insogna, a professor at Yale School of Medicine and director of the Yale Bone Center. “It opens up an entirely new approach to assessing bone quality.”

The researchers say this new type of MRI would complement traditional MRI, not supplant it. MRI of solids should also be possible with elements other than phosphorus, they say.

The researchers believe this new type of MRI imaging should be used to complement the traditional MRI already in place, and claim that MRI imaging of solids through other elements other than hydrogen or phosphorus should be possible. The quadratic echo MRI technique, however, can’t be used on living beings – for one it generates way too much heat. Immediate applications include archaeology, geology, oil drilling.

RelatedPosts

Purple bacteria turn sewage into hydrogen fuel
Scientists turn hydrogen into metal
Blue hydrogen is worse for climate than fossil fuels, study finds
What are stars made of?
Tags: hydrogenmriMRI scannerphosphorus

ShareTweetShare
Tibi Puiu

Tibi Puiu

Related Posts

mars
News

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

byJordan Strickler
2 weeks ago
Science

Kawasaki Unveils a Rideable Robot Horse That Runs on Hydrogen and Moves Like an Animal

byTibi Puiu
4 months ago
Agriculture

Healthy plants grown in lunar soil for the first time

byRupendra Brahambhatt
2 years ago
News

After lightning struck a tree, a researcher went to investigate. He found a completely new material

byFermin Koop
2 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.