ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Nanoscale wires defy quantum predictions, giving a new meaning to Moore’s law

Mihai AndreibyMihai Andrei
January 8, 2012
in Physics, Research, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Moore’s law states that the processing power of computers doubles approximately every two years; as prices fall and manufacturing technology increases, researchers have now shown that wires just a few nanometres wide conduct electricity in the same way as their larger counterparts, rather than being affected by quantum mechanics – a result which surprised many physicists.

Nowadays, this is an extremely important fact, as transistors have become so small it may not be long until their performance might start to be affected by (sometimes) unpredictable quantum effects – or many scientists believe this. Resistivity, for example, a measure of how much a material opposes the flow of an electrical current through it has been shown to increase exponentially after the width of a wire goes below 10 nanometers – a feat which dramatically hinders performance in devices. So this would seem to be a pretty good stop in microchip development – at least in the traditional way.

David Ferry, an electrical engineer at Arizona State University in Tempe points out that the components from the latest computer generation go as low as 22 nanometres long, so the question is – how much lower can they go?

Well, according to a recently published study, the answer is ‘a lot’. Michelle Simmons, a physicist and director of the Centre for Quantum Computation and Communication Technology at the University of New South Wales in Sydney, Australia, and her colleagues were able to create atomic scaled wires by covering a silicon crystal with a layer of hydrogen atoms and then carving out several-nanometre-wide channels in the hydrogen using the tip of a scanning tunnelling microscope. They then absorbed phosphorous atoms onto the exposed silicone, obtaining the much needed electrons for electric flow.

The width of the wires they created varied from 1.5 to 11 nanometers, but all of them are well in the range where you would expect the ‘funny business’ to occur; however, strangely enough, they found that the wires still acted according to Ohm’s classical law, going against previous findings. According to Simmons, the belief that quantum effect would alter resistivity is incorrect, and there are two main reasons why resistivity doesn’t depend on the sample size:

“[..]a strong overlap of electron wavefunctions resulting from the high density of phosphorous atoms in the wires; and the wires are completely encapsulated in silicon, so they have no external surfaces that can inhibit the mobility and availability of electrons.”

This work has major implications for the computer industry, as Ferry states:

RelatedPosts

Scientists develop single-atom transistor with ‘perfect’ precision
This bacterium shoots wires out of its body to power itself
Garden spiders use electrostatic charged silk to catch unsuspecting prey
The age of nano-electronics: scientists develop one of the world’s smallest circuits

“Before this paper there was perhaps one more generation of microchips, whereas now there might be two or three generations,” he says. He adds that it may be possible to reduce component lengths to as small as 5 nanometres.

Via Nature

Tags: moore lawnanoscale wirenanowire

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Chemistry

Scientist accidentally invents a rechargeable battery that could virtually last forever

byTibi Puiu
5 years ago
Uloborus plumipes is a species of Old World cribellate spider in the family Uloboridae. Common names include the feather-legged lace weaver and the garden centre spider, the latter name being due to its frequent occurrence of this spider in garden centres on the world. Image: Snip View
Animals

Garden spiders use electrostatic charged silk to catch unsuspecting prey

byTibi Puiu
10 years ago
Green Living

Insulating nanowire cloth that traps heat perfectly could help tackle climate change

byTibi Puiu
10 years ago
Thomas Sand Jespersen and Peter Krogstrup, here seen in the laboratorie at the Center for Quantum Devices, Niels Bohr Institute, where the research in nanowire crystals are taking place. The nanowire crystals may lie the foundation for future electronics, such as quantum computation and solar cells. Credit: University of Copenhaga
Nanotechnology

Superconductive nanowire hybrid fuses semiconductor and metal with atomic precision

byHenry Conrad
10 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.