ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

New 3D-printing process creates ligaments, tendons for transplant — paves the way for replacement organs

Print me a new me, please. Make me taller, too.

Alexandru MicubyAlexandru Micu
October 12, 2018 - Updated on October 25, 2019
in Biology, Health, Inventions, News, Tech
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research is merging 3D printing with human stem cells to provide on-demand tissues such as ligaments and tendons for transplant.

Fluorescent 3d-printed tissue.
Fluorescent cells the team printed to showcase their new process.
Image credits Robby Bowles / University of Utah College of Engineering.

It’s a tough life, and sometimes, our bodies pay the price. Such tolls, however, needn’t be permanent — and, new research from the University of Utah is making it easier than ever before to repair the damage. The team’s efforts pave the way to 3D-printed human tissues such as ligaments and tendons that can be used from transplant.

Break a leg! We can fix it later

“This is a technique in a very controlled manner to create a pattern and organizations of cells that you couldn’t create with previous technologies,” says University of Utah biomedical engineering assistant professor and paper co-author Robby Bowles.

“It allows us to very specifically put cells where we want them.”

Patients that require replacement tissues currently also need to supply it themselves from another part of the body or receive it from a cadaver. Such procedures carry their own risks, involve quite a lot of discomfort on the part of the patient, and (especially in the case of cadaver-sourced tissues) may be very off-putting for certain people. There’s also the risk that replacement tissue is of poor quality, either due to wear and tear or complications in the material’s retrieval from the body.

In an effort to work around these issues and reduce the total number of surgeries a potential patient would have to go through to receive a replacement, Bowles’ team worked on developing a 3D-printing method which can produce viable biological tissues.

Development of the process took two years to complete, the team reports. It relies on stem cells harvested from a patient’s body fat, which are printed on a hydrogel layer to form a tendon or ligament. These cells are grown in vitro (in the lab) in a culture and then implanted. According to the team, the technique can be used to create replacements for connective tissue such as ligaments, tendons, or cartilage — even complex structures such as spinal disks. Such disks are very complex structures that include bony interfaces (transitional areas), and must be reconstructed completely for a successful transplant, they add.

“[The 3D-printing process] will allow patients to receive replacement tissues without additional surgeries and without having to harvest tissue from other sites, which has its own source of problems,” says Bowles.

Much of the research went exactly into tackling complex structures such as spinal disks. Connective tissue is never ‘pure’ — it always includes multiple and complex patterns of interweaving cells. The tendons that flank your muscles, for example, must have transition zones to gradually shift into and attach to adjacent tissues, be them bone or muscle.

Bowles and his co-author David Ede, a former biomedical engineering master’s student at Utah, teamed up with Salt Lake City-based company, Carterra, Inc., which develops microfluidic devices for medicine. They developed their printer starting from a piece of hardware that Carterra typically uses to print antibodies for cancer screening applications. Bowles’ team developed a new printhead for the device that can lay down human cells with a high degree of control. The printhead, Bowles adds, could be adapted for any kind of 3-D printer.

RelatedPosts

3D printing could revolutionize how we eat
3-D Printed Gardens may reinvent urban green spaces
3D printed cat orthosis can save paws
Vaccine-coated, 3D-printed patches may soon replace a syringe near you

As a proof of concept, the duo printed genetically-modified, fluorescent cells, so they could analyze the structure of the final tissue.

Bowles, with a background in musculoskeletal research, said the technology currently is designed for creating ligaments, tendons and spinal discs. However, he excitedly adds that “it literally could be used for any type of tissue engineering application”. Eventually, the team hopes their technique can be used to print out whole organs, which would be a major breakthrough for patients on transplant waiting lists the world over.

The paper “Microfluidic Flow Cell Array for Controlled Cell Deposition in Engineered Musculoskeletal Tissues” has been published in the journal Tissue Engineering Part C: Methods.

Tags: 3d printingcartilageConnectiveligamentTendontissuetransplant

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

A person is designing a 3D object on a tablet.
Environmental Issues

A Unique Light-Sensitive Resin Could Make 3D Printing Faster and Cleaner

byRupendra Brahambhatt
4 days ago
Concept image of 3D printed red blood cells.
Biology

This Injectable Ink Lets Doctors 3D Print Tissues Inside the Body Using Only Ultrasound

byRupendra Brahambhatt
3 weeks ago
Future

Japan 3D printed a train station. It only took 6 hours

byRupendra Brahambhatt
1 month ago
An image of the 3D printed nano lattice (left) and a cell of the lattice resting on a bubble (right)
Materials

This Tiny 3D Printed Material is as Strong as Steel but as Light as Styrofoam

byRupendra Brahambhatt
2 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.