ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Mind & Brain

Brain circuit links sleep-wake cycle with reward system — a new potential target for insomnia drugs

A connection between reward and sleep has been found by neuroscientists. New drugs that target this circuit could help insomniacs ease into sleep.

Tibi PuiubyTibi Puiu
September 6, 2016
in Mind & Brain, Neurology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
sleeping-brain
Credit: buzzhourly.com

The brain’s reward system that motivates us to have sex, flee from predators, or search for food is deeply connected with the sleep-wake cycle through the same circuit. The researchers who identified the brain circuit and its relation to the two major systems for the first time say new drugs can be developed to specifically target this circuit. Insomniacs, for instance, could sleep soundly without suffering from the side effects of shutting down the whole brain.

The anatomy of sleep

Scientists have suspected for some time that there’s a connection between the reward system and the circuitry that governs sleep-wake states. After all, there isn’t anything to trigger a neurochemical feel-good reward in your sleep. The anatomical location of the interface between the brain’s reward and arousal systems has lacked until now, however.

Luis de Lecea and Ada Eban-Rothschild, both from Stanford’s Medical Center, used a bottom-up approach and went back to the roots — dopamine secretion. All vertebrates, be them fish, reptiles or mammals, have almost the same reward system in which the neurotransmitter dopamine plays a key role, regulating mood, sleep, movement, memory, learning, attention and more.

Most of the brain’s dopamine originates in secreting nerve fibers located in a particular brain structure called the ventral tegmental area (VTA). These dopamine-secreting fibers run in tracts to many different parts of the brain, supplying them with the pleasure-triggering chemical. Perhaps the greatest density of these fibers congregates in the nucleus accumbens, a forebrain structure involved in generating feelings of pleasure in anticipation of or in response to obtaining something.

“Since many reward-circuit-activating drugs such as amphetamines that work by stimulating dopamine secretion also keep users awake, it’s natural to ask if dopamine plays a key role in the sleep-wake cycle as well as in reward,” Eban-Rothschild said. “But, in part due to existing technical limitations, earlier experimental literature has unearthed little evidence for the connection and, in fact, has suggested that this circuit probably wasn’t so important.”

Sleepy, sleepy rodents

For their experimental setup, the researchers engineered lab mice so the animals’ dopamine-secreting cells in the VTA could be activated, suppressed or monitored remotely.

The activity of these nerve cells in the VTA rose sharply upon waking and stayed elevated throughout the time the rodents were awake. When the mice were about to go to sleep, dopamine secretion ramped down and remained low during slumber. When the team activated the nerve cells, the animals swiftly awoke from their sound sleep and stayed awake for long periods of time, even if it was way passed their bed time (the diurnal cycle).

When the VTA’s activity was suppressed during the rodents’ active part of their 24-hour-cycle, the mice dozed off the whole time despite the fact that temptations like high-fat food, a female, and fear triggering fox urine were laying about the cage.

RelatedPosts

We can form new memories while we’re asleep but not the meaningful kind
What is a stroke?
No matter how hard you try, all your movements are plain lazy. Blame your brain
Your left hemisphere can veto the right one into submission — but they generally play nice

Something very interesting happened when VTA-suppressed mice were put in a new and unfamiliar cage, though. You see, typically any mouse that is confined to a new environment will explore the surroundings energetically. The VTA-suppressed mice, which slumbered next to the most attractive and repelling stimuli imaginable for a rodent, stayed awake in this situation for the first 45 minutes of the hour they spent in the new cage. All of this waking time was spent building a nest — and “they were really careful about it”, Eban-Rothschild said.

Once the nest was finished to a satisfying degree, the rodents almost instantly fell asleep but if the VTA-suppressed mice were introduced in a new cage complete with the nest they just built, the rodents went soundly to sleep.

Control mice who received no intervention whatsoever ran around the new cage erratically and basically paid no attention to the pellet of nesting material.

This peculiar behavior was analyzed in great detail. Eban-Rothschild correlated 1-second-long video segments with the corresponding brain activity recorded during those frames. She saw that actions directly connected to building nests were marked by reduced VTA activity, while actions that weren’t were associated with higher levels of VTA activity.

“We knew stimulating the brain’s dopamine-related circuitry would increase goal-directed behaviors such as food- and sex-seeking” said Eban-Rothschild. “But the new study shows that at least one complex behavior is induced not by stimulating, but by inhibiting, this very circuit. Interestingly, this behavior — nest building — is essential to a mouse’s preparation for sleep.”

“This is the first finding of a sleep-preparation starter site in the brain. It’s likely we humans have one, too. If we’re disrupting this preparation by, say, reading email or playing videogames, which not only give off light but charge up our emotions and get our VTA dopaminergic circuitry going, it’s easy to see why we’re likely to have trouble falling asleep,” de Lecea added.

The researchers write in their paper published in the journal Nature Neuroscience that the sleep anticipatory phase is often the root of many people’s sleeping problems. Targeting this brain circuit might help insomniacs ease into sleep. Drugs that act on the VTA nerve cells could also help those suffering from schizophrenia or bipolar disorder that are also characterized by sleep-wake cycle disturbances.

“This has potential huge clinical relevance,” de Lecea said. “Insomnia, a multibillion-dollar market for pharmaceutical companies, has traditionally been treated with drugs such as benzodiazepines that nonspecifically shut down the entire brain. Now we see the possibility of developing therapies that, by narrowly targeting this newly identified circuit, could induce much higher-quality sleep.”

“We have plenty of drugs that counter dopamine,” he added. “Perhaps giving a person the right dose, at just the right time, of a drug with just the right pharmacokinetic properties so its effect will wear off at the right time would work a lot better than bombarding the brain with benzodiazepines, such as Valium, that knock out the entire brain.”

“It could be that merely solving the sleep-wake part will clear up a lot of symptoms,” de Lecea said.

 

 

Tags: brainsleep

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
4 days ago
Future

Can you upload a human mind into a computer? Here’s what a neuroscientist has to say about it

byDobromir Rahnev
2 weeks ago
Genetics

Scientists Gave a Mouse a Stretch of Human DNA and Its Brain Grew 6% Bigger

byTudor Tarita
3 weeks ago
Health

Scientists Just Discovered What Happens in Your Brain During an Eureka Moment

byTudor Tarita
3 weeks ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.