ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Diseases

Genetic probe flares cancer directly in the blood stream

Tibi PuiubyTibi Puiu
November 20, 2014
in Diseases, Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Genetic ‘typos’ may be a more powerful driver of cancer in humans than environmental factors
Nano-probes sniff out cancer using their nucleic acids
Cancer cells turned into fat to stop cancer development
Human activity is causing cancer in many species of wildlife — and this effect is greatly underestimated

The Nanoflare technology uses a genetic-based approach to detect and image live cancer cells present in the blood stream, well before these had a chance to develop into a tumor. The gene-hunting particles developed at Northwestern University might help doctors develop personalized treatments for their patients and curb cancer spread, according to the paper published in PNAS.

Hunting cancer’s genes

NanoFlares light up (red clouds) individual cells if a cancer (in this study, breast cancer) biomarker (messenger RNA, blue) is detected by recognition DNA (green) molecules coated on gold nanospheres and containing a fluorescent chemical (red) reporter flare (credit: Tiffany L. Halo et al./PNAS)
NanoFlares light up (red clouds) individual cells if a cancer (in this study, breast cancer) biomarker (messenger RNA, blue) is detected by recognition DNA (green) molecules coated on gold nanospheres and containing a fluorescent chemical (red) reporter flare (credit: Tiffany L. Halo et al./PNAS)

We’ve heard about nanoparticles that bind to cancer cells and mark these for detection, but Nanoflare works fundamentally different. Each Nanoflare is a tiny spherical nucleic acid with a gold nanoparticle core outfitted with single-stranded DNA “flares”. While conventional cancer nanoparticles bind to particles on the cancer cell’s surface, the new approach tracks tumor cells by recognizing a specific genetic code. But first the core nanoparticle, only 13 nanometers across, enters the cell, healthy or not. Once inside, if the specific genetic code is found inside, the Nanoflare binds to the target and lights up – it releases a powerful florescent signal. Easily visible, the researchers can then isolate the cells in question, culture them and apply various treatments to see which one works best. Once the doctors know which is the key treatment, they then serve it to the patient. Nanoflare was specifically designed for breast cancer, but the authors note it could be applied for other forms as well.

“This technology has the potential to profoundly change the way breast cancer in particular and cancers in general are both studied and treated,” said Chad A. Mirkin, PhD, a noted nanomedicine expert and a corresponding author of the study.

“Cancers are very genetically diverse, and it’s important to know what cancer subtype a patient has,” Mirkin said. “Now you can think about collecting a patient’s cells and studying how those cells respond to different therapies. The way a patient responds to treatment depends on the genetic makeup of the cancer.”

What’s truly groundbreaking about Nanoflare is that it can detect cancer cells in the blood stream. When the technique was tested with four different NanoFlares, each with a different genetic target relevant to breast cancer metastasis, cancer cells were detected with less than 1 percent incidence of false-negative results.

“When it comes to detecting and treating cancer, the mantra is the earlier, the better,” Thaxton said. “This technology may enable us to better detect circulating cancer cells and provides another tool to add to the toolkit of cancer diagnosis.”

Via KurzweilAI

Tags: cancer

ShareTweetShare
Tibi Puiu

Tibi Puiu

Related Posts

Future

This Disturbing Phone Case Gets Sunburned Like Real Skin to Teach You a Lesson

byTibi Puiu
1 week ago
Diseases

Your Workout Might Be Coaching Your Gut Bacteria to Help Fight Cancer

byMihai Andrei
1 week ago
Health

This is How Exercise Supercharges the Immune System Against Cancer

byTudor Tarita
2 weeks ago
Serotine bat. Image credits: Alona Shulenko.
Animals

Why Bats Don’t Get Cancer—And What That Could Mean for Us

byTudor Tarita
1 month ago

Recent news

Scientists Discover Life Finds a Way in the Deepest, Darkest Trenches on Earth

July 31, 2025

Solid-State Batteries Charge in 3 Minutes, Offer Nearly Double the Range, and Never Catch Fire. So Why Aren’t They In Your Phones and Cars Yet?

July 30, 2025

What if the Secret to Sustainable Cities Was Buried in Roman Cement?

July 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.