ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

New study wants to tackle depression, obesity, chronic pain by blocking a single protein

Sounds a bit too good to be true, I gotta admit!

Alexandru MicubyAlexandru Micu
April 1, 2019
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research aims to shut down a protein linked to major depression, obesity, and chronic pain.

SAFit2.
The new inhibitor (colored orange) only blocks the activity of FKBP51, which is involved in depression, chronic pain and obesity.
Image credits Felix Hausch.

One protein known as FK506-binding protein 51, or FKBP51 for short, has previously been linked to depression, obesity, diabetes, and chronic pain. A new study is looking into ways we can block its activity in mice, in an effort to relieve chronic pain and have positive effects on diet-induced obesity and mood. The new compound could also have applications in alcoholism and brain cancer, the team explains.

The problematic protein

“The FKBP51 protein plays an important role in depression, obesity, diabetes and chronic pain states,” says Felix Hausch, Ph.D., the project’s principal investigator.

“We developed the first highly potent, highly selective FKBP51 inhibitor, called SAFit2, which is now being tested in mice. Inhibition of FKBP51 could thus be a new therapeutic option to treat all of these conditions.”

Hausch said he became “intrigued” by the protein’s peculiar role in the body, especially its link to depression. So, together with his team, he set about trying to shut it down. Among others, the protein can limit glucose uptake in cells and the browning of fat, which, taken together, can make our bodies store adipose tissue instead of shedding it. It also has a part to play in regulating our stress responses, Hausch adds, so finding a way to block FKBP51 could help treat a variety of conditions.

But here’s the catch: FKBP51 is extremely similar in structure to FKBP52, even though they perform almost opposite roles in cells. It is exceedingly difficult, then, to develop a drug that interacts with only one of these proteins and not the other. To tackle this issue, the team used nuclear magnetic resonance techniques to look at the FKBP51 protein, and discovered a new binding site.

“We have this yin-yang situation,” Hausch says. “Selectivity between these two proteins is thought to be crucial, but this is hard to achieve since the two proteins are so similar. We discovered that FKBP51 can change its shape in a way that FKBP52 can’t, and this allowed the development of highly selective inhibitors.”

Based on their analysis, the team started developing SAFit2, a substance they say could work to inhibit the activity of FKBP51 — and only FKBP51. Animal testing revealed that SAFit2 can help mice “cope better in stressful situations”, Hausch reports. It reduced stress hormone levels, promoted more active stress coping, was synergistic with antidepressants, protected against weight gain, helped normalize glucose levels, and reduced pain in three animal models.

Besides SAFit2, the approach they developed could help other researchers identify similar “cryptic” binding sites in challenging drug targets in the future, Hausch says.

The findings so far are pretty exciting, the team explains, but much more work needs to be done before we have FKBP1 inhibitors that are safe to use in human tests. Until then, they are exploring the potential applications of such compounds in animals. They’re also interested in using such inhibitors to treat alcoholism and have already started digging into this idea, but the results are still too early to report on.

RelatedPosts

A DNA-ring pill might diagnose any cancer fast and accurately
Researchers work on a color-change urine test for cancer
Your Brain on Stress Is Worse Than You Think, Especially If You’re Depressed
Why serotonin makes you happy (or very, very sad)

Hausch also says that certain types of glioblastoma tumors overexpress FKBP51. This suggests that FKBP51 inhibitors might be used to treat cancer in patients whose tumors mutate beyond what current medication can treat.

“We may be able to resensitize them to different types of chemotherapy using these specific inhibitors,” he says.

The findings have been presented at the American Chemical Society (ACS) Spring 2019 National Meeting & Exposition under the title “Selective FKBP51 inhibitors enabled by transient pocket binding.”

Tags: Alcoholismcancerdepressionpainprotein

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Health

Newborns Feel Pain Long Before They Can Understand It

byTudor Tarita
23 hours ago
Health

Your Brain on Stress Is Worse Than You Think, Especially If You’re Depressed

byAlexandra Gerea
1 week ago
Serotine bat. Image credits: Alona Shulenko.
Animals

Why Bats Don’t Get Cancer—And What That Could Mean for Us

byTudor Tarita
2 weeks ago
An illustration showing reprogrammed immune cells attacking cancer cells.
Diseases

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

byRupendra Brahambhatt
3 weeks ago

Recent news

This $8750 Watch Was Designed for Space and Could Finally Replace Apollo-era Omega Watches

July 4, 2025

The Brain May Make New Neurons in Adulthood and Even Old Age

July 4, 2025

Your gut has a secret weapon against ‘forever chemicals’: microbes

July 3, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.