ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Your brain is cleaning itself while you’re dreaming, new research suggests

Keep it squeaky clean, everybody!

Alexandru MicubyAlexandru Micu
August 31, 2021
in Health, Mind & Brain, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

The findings help us better understand why virtually all animals sleep, despite the fact that it leaves us helpless against predators and other threats.

Image via Pixabay.

The team, led by members from the University of Tsukuba explains that a certain phase of sleep (rapid eye movement sleep, or REM) gives our brains the opportunity to perform necessary maintenance. This, in turn, ensures that they’re running at peak capacity the rest of the time. The research builds on previous measurements of blood flow in the brain during different phases of sleep and wakefulness, which yielded conflicting results. In this study, the researchers used a technique to directly visualize how red blood cells move through the brain capillaries of sleeping and awake mice, while also measuring electrical activity in the brain.

Housekeeping

“We used a dye to make the brain blood vessels visible under fluorescent light, using a technique known as two-photon microscopy,” says senior author of the study Professor Yu Hayashi. “In this way, we could directly observe the red blood cells in capillaries of the neocortex in non-anesthetized mice.”

“We were surprised by the results. There was a massive flow of red blood cells through the brain capillaries during REM sleep, but no difference between non-REM sleep and the awake state, showing that REM sleep is a unique state”

In order to help elucidate the confusing previous findings around this topic, the authors monitored brain flow rates in different areas of the brain alongside electrical activity. The latter was used to distinguish between different states of awareness (non-REM sleep, REM sleep, full wakefulness). Since we know that the development of certain conditions such as Alzheimer’s — which involve the buildup of waste products in the brain — is associated with reduced blood flow in the brain, the former was used as a rough estimate for maintenance and cleaning processes taking place in the mice’s brains.

The link between the two is that the removal of these waste products involves biochemical processes that eventually culminate in an increased blood flow (as the waste needs to be physically removed) during rest. Disposal of this material doesn’t take place, to the best of our knowledge, during wakefulness; or, at least, not to any extent that we’ve been able to pick up on.

After recording the differences between the three states, the team also disrupted the mice’s sleeping. They report that this resulted in their brains engaging in a “rebound” REM sleeping pattern later in the experiment. This state, which resembles a stronger REM sleeping state, was likely used to compensate for the earlier disruption, the team hypothesizes. This, by itself, suggests that REM sleep has an important role to play in brain functionality.

Later, the team repeated this sleep disruption experiment with mice whose brain A2a receptors were artificially blocked — these are the same receptors that get blocked after you have a cup of coffee, and doing so makes you feel more awake. In these conditions, they saw a much lower increase in blood flow during both REM and rebound-REM sleep. This is a strong indicator “that adenosine A2a receptors may be responsible for at least some of the changes in blood flow in the brain during REM sleep,” says Professor Hayashi.

Judging from these findings, the team says that there may be merit in investigating whether the heightened blood flow seen in brain capillaries during REM sleep facilitates waste removal from brain tissues. This could, in time, lead us towards treatments or preventive measures against conditions such as Alzheimer’s disease. They also point to adenosine A2a receptors as a prime candidate for such treatments, given the observed role of these neurons in modulating blood flow in the brain during REM sleep.

RelatedPosts

The heart may have its own “mini-brain”: a nervous system that controls heartbeat
Suppressing reasoning side of the brain with harmless electrical zaps enhances creativity
Rats watching their friends learn how to navigate a setting, helping us better understand our own “internal GPS”
Just a single chocolate bar may boost memory, cognition, immunity, and mood

The paper “Cerebral capillary blood flow upsurge during REM sleep is mediated by A2a receptors” has been published in the journal Cell Reports.

Tags: alzheimer'sbrainsleep

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Mind & Brain

The Brain May Make New Neurons in Adulthood and Even Old Age

byTibi Puiu
8 hours ago
Mind & Brain

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

byTibi Puiu
1 week ago
Home science

What side do cats prefer to sleep on? The left side, and there’s a good reason for that

byMihai Andrei
1 week ago
Close-up photo of a tiny wasp.
Animals

Wasp Mums Keep Remarkable Mental To-Do List For Multiple Nests Despite Tiny Brain

byRupendra Brahambhatt
1 week ago

Recent news

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

July 4, 2025

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

July 4, 2025

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

July 4, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.