Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Insecticide is killing honeybees, causing colony collapse disorder

Mihai Andrei by Mihai Andrei
May 12, 2014
in Environment, News

A Harvard study shows insecticides with neonicotionoids are devastating honeybee colonies, triggering colony collapse disorder.

Image via Wired.

Recently, we’ve written a lot about bees – because it’s a big deal. The National Agriculture Statistics Service reported that there were 2.44 million honey-producing hives in the United States as of February 2008, down from 4.5 million in 1980 – and it’s not much better in other parts of the world. Since three quarters of the world’s food require pollination, we’re talking about more than just bee populations. But it gets even worse: it’s also greatly affecting wild pollinators, and we still don’t know exactly why it’s happening (even though it’s pretty clear that we are the ones causing it, and there are some main suspects). Now, a new study from Harvard University claims to have figured out that problem, pointing to insecticides as the culprit.

“We demonstrated that neonicotinoids are highly likely to be responsible for triggering ‘colony collapse disorder’ in honeybee hives that were healthy prior to the arrival of winter,” said Chensheng Lu, an expert on environmental exposure biology at Harvard School of Public Health and who led the work.

Neonicotinoids are a class of neuro-active insecticides chemically similar to nicotine, and have been linked to damage caused to bees in insects for several years. Countries in the EU are already starting to ban the use of neonicotinoids, as the European Commission recommended a restriction of their use across the European Union but as usually, the US and Asia are lagging behind when it comes to environmental issues.

Connecting the dots

It was suspected for a long time that insecticides are directly connected with CCD, but due to the complexity of all the factors involved, it was pretty hard to directly connect the two. Now, researchers believe they’ve done that.

They monitored health of 18 bee colonies in three locations in central Massachusetts from October 2012 till April 2013. They treated two colonies with imidacloprid, two with clothianidin, and two were untreated control hives.

“Bees from six of the 12 neonicotinoid-treated colonies had abandoned their hives and were eventually dead with symptoms resembling CCD,” the team wrote. “However, we observed a complete opposite phenomenon in the control colonies.” Only one control colony was lost, the result of infection by the parasitic fungus Nosema and in this case the dead bees remained in the hive – this was not related to CCD.

This is a smoking gun for researchers, who were thrilled to report the findings.

“It is striking and perplexing to observe the empty neonicotinoid-treated colonies because honey bees normally do not abandon their hives during the winter,” the scientists wrote. “This observation may suggest the impairment of honey bee neurological functions, specifically memory, cognition, or behaviour, as the results from the chronic sub-lethal neonicotinoid exposure.”

So, the plan of action is simple (at least in the first stages) – stop using the damn neonicotinoid insecticides! They’re destroying bee populations. In European countries where this class of insecticides are banned, the cases of CCD have started to drop significantly, but in the UK, where the ban on neonicotinoids wasn’t implemented, CCD cases are peaking. The same goes for the US and China. After these substances are banned, we will probably see a stabilization of the bee (and wild pollinators) populations, and actually start thinking about how to regrow these populations. The solution is simple – we just have to do it.

Scientific Reference: Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. How Colony Collapse Disorder Affects Honeybees and Humans
  2. Bee markets still in good shape despite pressures from parasites and colony collapse disorder
  3. Malaria-bearing mosquitoes are evolving insecticide-resistant feet
  4. Blood-mimicking eco-insecticide baits and kills malaria-carrying mosquitoes
  5. Thousand-year-old penguin poop points to devastating colony collapse at the hand of volcanic eruptions
Tags: colony collapse disorderinsecticideneonicotinoid

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW