ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment

Douglas fir forests are buckling under the heat, pausing their growth altogether

Silly trees, can't they set the thermostat lower, like the rest of us?

Alexandru MicubyAlexandru Micu
August 11, 2016 - Updated on September 14, 2016
in Biology, Climate, Environment, Environmental Issues, News, Science, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

America’s iconic Douglas firs are feeling the heat (and drought) of shifting climate patterns all across the Western U.S., finds a new University of California study.

Tiny mushrooms growing out of a Douglas Fir cone near Mount Lewis on the MiWok Ranger District of the Stanislaus National Forest. Image credits Alice Poulson / USFS Region 5 Flickr.
Tiny mushrooms growing out of a Douglas Fir cone near Mount Lewis on the MiWok Ranger District of the Stanislaus National Forest.
Image credits Alice Poulson /
USFS Region 5 Flickr.

Nobody enjoys a good old fashioned heat-wave, especially when there’s no water to be found anywhere. You’re sluggish, sweaty, bad-tempered and all you want to do is find a cool surface and put as much of your body surface against it as you can. The Douglas fir understands you. In fact, it would probably do just the same as you would, if its roots didn’t you know, root it in place.

So when confronted with a heat wave strong enough to dry the soil and air around the trees, they do the next best thing at their disposal — they stop growing altogether. And this could have huge implications for forest carbon stocks and the global carbon cycle.

“If trees are being less productive, if they are not growing as well, they are taking in less CO2 from the atmosphere,” said Christina Restaino, a postdoctoral researcher at the University of California, Davis.

“Tree stress can lead to the point where trees die, and when we lose tree species on the landscape, there’s always the question of what is going to grow back in its place.”

For the study, Restaino and her team examined more than 2,000 tree cores from 122 locations across the Western United States. They found that rising temperatures hurt the growth cycle of the trees — because it removes water from both the soil and atmosphere, the heat causes the firs to lose water faster than they can take it in. The trees respond by closing their stomata, tiny pores which shuttle in carbon dioxide and pump out oxygen during photosynthesis.

Using climate models to gauge future conditions, the team determined that the air and soil which Douglas fir forests rely on could dry up for up to double the time we see today by 2080. This would also translate into double the effect on growth we see today, the team added. The effects were most pronounced in the Southwest, which is already experiencing higher temperatures. Douglas firs in the Pacific Northwest fared a bit better.

“This is a species that has been logged historically and still is, so it certainly is important in terms of thinking about not only how our ecosystems are responding to changes in climate, but also in changes of the economics of forest management, as well,” Restaino said.

The team spent three summers harvesting their own tree cores for the study instead of using the extensive tree core data set available from the International Tree-Ring Data Bank (ITRDB.) They also used data collected by co-author Jeremy Littell, lead research scientist with the U.S. Geological Survey at Alaska’s Climate Science Center.

This way they can get an accurate snapshot of how Douglas firs respond to climate change between 1916 to 2006 across their entire U.S. range. ITRDB cores are often taken from trees in the harshest environments so they can be easily connected to the climates of past years, but that offers a biased view of the species’ response.

RelatedPosts

The European Space Agency wants to mine the moon for oxygen and water
It’s Erin Brockovich all over again: rusty iron pipes are exposing us to cancer-causing chemical
Huge waves of foam wash over Froggy Beach after last week’s storm
Scientists reproduce superionic ice thought to exist in Uranus’ core

“We can tell a larger story about a whole range of tree-growing environments,” she said.

The full paper, titled “Increased water deficit decreases Douglas fir growth throughout western US forests” has been published online in the journal PNAS.

Tags: DouglasFirGrowthheattreeswater

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Environment

Thousands of Centuries-Old Trees, Some Extinct in the Wild, Are Preserved by Ancient Temples in China

byTibi Puiu
7 days ago
Environment

New Global River Map Is the First to Include River Bifurcations and Canals

byRebecca Owen
4 weeks ago
Biology

Spruce Trees Are Like Real-Life Ents That Anticipate Solar Eclipse Hours in Advance and Sync Up

byTibi Puiu
1 month ago
Environment

Mexico Will Give U.S. More Water to Avert More Tariffs

byKimberly M. S. Cartier
1 month ago

Recent news

Bioengineered tooth “grows” in the gum and fuses with existing nerves to mimic the real thing

June 13, 2025

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

June 13, 2025

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.