ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

New insight on water’s strange properties

Mihai AndreibyMihai Andrei
August 12, 2009
in Chemistry, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

glass sphere on water The paradox of water is that everybody knows it, but no one really understands it. It’s the most fascinating substance we have come across so far, and it still has many secrets for us. For example, the molecular structure of water still eludes scientists, and as a result, water still has many properties which we poorly understand.

However, work conducted by researchers from the Department of Energy’s SLAC National Accelerator Laboratory and several universities in Sweden and Japan is starting to pay off, as they’re shedding new light on water’s molecular idiosyncrasies, especially on the bulk properties. All in all, there are 66 known anomalies of water, including a strangely varying density, large heat capacity and high surface tension.

For example, other liquids become denser as they get colder, but water reaches maximum density at 4 degrees Celsius; both above and below, water is less dense. Water also has an amazing capacity of storing heat, and a huge surface tension as well.

“Understanding these anomalies is very important because water is the ultimate basis for our existence: no water, no life,” said SLAC scientist Anders Nilsson, who is leading the experimental efforts. “Our work helps explain these anomalies on the molecular level at temperatures which are relevant to life.”

How water molecules arrange themselves in solid form has been established long ago, now the debate is around how molecules arrange in liquid molecules. The current accepted theory is that since ice molecules form a tight “tetrahedral” lattice, water should be made similar, only less structured due to the heat that breaks some bonds. As ice melts, the tetrahedrals loosen up, but they still ‘try’ to stay together, so the end result is ‘a smooth distribution around distorted, partially broken tetrahedral structures’

Recently, the above mentioned researchers tried to use powerful X-Ray technology to sort the mystery, and they found that the textbook accepted version is not correct. Their experiments suggested that two unexpected and very distinct structures exist, no matter the temperature: either very disordered or very tetrahedral.

The two types are spatially separated with the tetrahedral structures appearing in ‘clumps’ of up to 100 molecules surrounded by disordered areas. However, as the temperature of the water increases, fewer and fewer of these clumps exist, but they never disappear totally. Also, as the temperature rises, the disordered parts become even more disordered.

“One can visualize this as a crowded dance restaurant, with some people sitting at large tables, taking up quite a bit of room—like the tetrahedral component in water—and other people on the dance floor, standing close together and moving slower or faster depending on the mood or ‘temperature’ of the restaurant—like the molecules in the disordered regions can be excited by heat, the dancers can be excited and move faster with the music,” Nilsson said. “There’s an exchange when people sitting decide to get up to dance and other dancers sit down to rest. When the dance floor really gets busy, tables can also be moved out of the way to allow for more dancers, and when things cool back off, more tables can be brought in.”

“Previously, hardly anyone thought that such fluctuations leading to distinct local structures existed at ambient temperatures,” Nilsson said. “But that’s precisely what we found.”

He then concluded:

RelatedPosts

“Super sand” is five times more purifying than regular one. Turns toxic water into drinkable water
Off-grid shower recovers and purifies 96% of water for you to use again
Novel graphene filter removes 99% of organic waste in water
Cheap nano-filter scrubs toxic metals from polluted water

“If we don’t understand this basic life material, how can we study the more complex life materials—like proteins—that are immersed in water?” asked Postdoctoral Researcher Congcong Huang, who conducted the X-ray scattering experiments. “We must understand the simple before we can understand the complex.”

Tags: oxygenparadoxwater

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Environment

New Global River Map Is the First to Include River Bifurcations and Canals

byRebecca Owen
1 day ago
Environment

Mexico Will Give U.S. More Water to Avert More Tariffs

byKimberly M. S. Cartier
2 weeks ago
Biology

Bigger Animals Do Get More Cancer, Overturning a 45-Year-Old Myth. But Exceptions Could Make All The Difference

byTibi Puiu
3 months ago
Geology

Exoplanets may have more water than we thought — but there’s a catch

byMihai Andrei
9 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.