ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Passive Wi-Fi uses 10,000 less energy and can power devices

University of Washington researchers want to flip Wi-Fi energy use upside down. They've invented a new protocol and technique that uses 10,000 less energy. The same signal can be used to power devices without the need of an external power source. Cameras, temperature or motion sensors can all be power and connected to the internet at the same time using 'passive Wi-Fi.'

Tibi PuiubyTibi Puiu
February 25, 2016
in News, Tech, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

Wi-Fi use can account for up to 60 percent of the phone’s total energy consumption. Even if you aren’t actually connected to a network, having it on will drain a lot of energy because the device is constantly searching for a signal. University of Washington researchers want to flip Wi-Fi energy use upside down. They’ve invented a new protocol and technique that uses 10,000 less energy. The same signal can be used to power devices without the need of an external power source. Cameras, temperature or motion sensors can all be power and connected to the internet at the same time using ‘passive Wi-Fi.’

UW computer scientists and electrical engineers have generated “passive” Wi-Fi transmissions that use 10,000 times less power than current methods.University of Washington
UW computer scientists and electrical engineers have generated “passive” Wi-Fi transmissions that use 10,000 times less power than current methods.University of Washington

Wireless electricity is far from new, but getting a device to also communicate is a bit more challenging. The team showed that it’s possible to turn weak signals into power and also communicate through a process called backscattering. The gist is that an additional device is used to reflect incoming radio waves from a source, and it’s this reflected signal that’s picked up by the devices. This is how an RFID chip inside a contactless card works. But a key difference is the technology developed at University of Washington doesn’t need a special device to read the signal, as is the case of contactless cards.

For instance, one version of the tech developed by the researchers called ‘passive Wi-Fi’  lets battery-free gadgets connect with conventional devices such as computers and smartphones by backscattering Wi-Fi signals.

There’s a digital and analog side to radio transmission. While the digital side has become extremely energy efficient in the past two decades, the same can’t be said of the analog side. So, what the researchers did was effectively decouple the analog and the digital signals. The Passive Wi-Fi architecture assigns the analog, power-intensive functions – like producing a signal at a specific frequency — to a single device in the network that is plugged into the wall.

In Passive Wi-Fi, power-intensive functions are handled by a single device plugged into the wall. Passive sensors use almost no energy to communicate with routers, phones and other devices. Image: University of Washington
In Passive Wi-Fi, power-intensive functions are handled by a single device plugged into the wall. Passive sensors use almost no energy to communicate with routers, phones and other devices. Image: University of Washington

Next, an array of sensors produce  Wi-Fi packets of information using very little power by simply reflecting and absorbing that signal using a digital switch. Prototype passive Wi-Fi devices have transfered data as far as 100 feet and made connections through walls. Data was transferred at 11 megabits per second.

“All the networking, heavy-lifting and power-consuming pieces are done by the one plugged-in device,” said co-author Vamsi Talla, an electrical engineering doctoral student. “The passive devices are only reflecting to generate the Wi-Fi packets, which is a really energy-efficient way to communicate.”

“Our sensors can talk to any router, smartphone, tablet or other electronic device with a Wi-Fi chipset,” said co-author and electrical engineering doctoral student Bryce Kellogg. “The cool thing is that all these devices can decode the Wi-Fi packets we created using reflections so you don’t need specialized equipment.”

The system uses  10,000 times less energy than conventional methods, and uses a thousandth as much power as the Bluetooth LE and ZigBee communications standards.

“Even though so many homes already have Wi-Fi, it hasn’t been the best choice for that,” said co-author Joshua Smith, UW associate professor of computer science and engineering and of electrical engineering. “Now that we can achieve Wi-Fi for tens of microwatts of power and can do much better than both Bluetooth and ZigBee, you could now imagine using Wi-Fi for everything.”

Passive Wi-Fi was  named one of 10 breakthrough technologies of 2016 by MIT Technology Review.

RelatedPosts

MIT Wi-Fi technology can see you through walls
Intelligent alien life hunters pick up 15 high-energy bursts far across the universe
Highly accurate 3-D positioning system could change the face of gaming
Earth-sized exoplanet has a magnetic personality

Tags: radio wavesWi-fi

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Aurora-like radio emissions found above sunspot

byTibi Puiu
2 years ago
Science

Earth-sized exoplanet has a magnetic personality

byJordan Strickler
2 years ago
News

Strange radio waves picked up from center of Milky Way baffle astronomers

byJordan Strickler
4 years ago
Health

Radio-wave treatment shows some promise against liver cancer

byAlexandru Micu
4 years ago

Recent news

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

June 13, 2025

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

June 13, 2025

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.