ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astronomy

Strange “X-Ray Rainbow” could be used to calculate stellar distances

Mihai AndreibyMihai Andrei
June 24, 2015
in Astronomy, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Black hole in Dragon’s belly swallows star and everything goes nutty from here
Astronomers confirm heavy elements are born from neutron star collisions
Gravitational waves show us how gold is formed
Peculiar pulsar slows down before ‘glitching’

NASA released the breathtaking image you see below, announcing that it is basically X-ray light echoes reflecting off clouds of dust. But this image does more than thrill us amateur stargazers – it helps astronomers figure out how far away the double star system Circinus X-1 is from Earth.

A light echo in X-rays detected by NASA’s Chandra X-ray Observatory has provided a rare opportunity to precisely measure the distance to an object on the other side of the Milky Way galaxy. The rings exceed the field-of-view of Chandra’s detectors, resulting in a partial image of X-ray data.
Credits: NASA/CXC/U. Wisconsin/S. Heinz

“It’s really hard to get accurate distance measurements in astronomy and we only have a handful of methods,” said Sebastian Heinz of the University of Wisconsin in Madison, who led the study. “But just as bats use sonar to triangulate their location, we can use the X-rays from Circinus X-1 to figure out exactly where it is.”

Circinus X-1 is an X-ray binary star system that includes a neutron star, a type of stellar remnant that can result from the gravitational collapse of a massive star after a supernova. Neutron stars are the densest and smallest stars known to exist in the universe; with a radius of only about 12–13 km (7 mi), they can have a mass of about two times that of the Sun. Observation of Circinus X-1 in July 2007 revealed the presence of X-ray jets normally found in black hole systems, the first neutron star ever observed  that displays this similarity to black holes.

“Circinus X-1 acts in some ways like a neutron star and in some like a black hole,” said co-author Catherine Braiding, also of the University of New South Wales. “It’s extremely unusual to find an object that has such a blend of these properties.”

In 2013, the Circinus system created a burst of X-rays; the X-rays bounced off clouds of interstellar dust, resulting in rings of X-ray light which were ultimately picked up by the Chandra X-Ray observatory. The results are as beautiful as they are useful for astronomers.

“We like to call this system the “Lord of the Rings,” but this one has nothing to do with Sauron,” says study co-author Michael Burton of the University of New South Wales in Australia. “The beautiful match between the Chandra X-ray rings and the Mopra radio images of the different clouds is really a first in astronomy.”

By comparing the Chandra data to prior images of dust clouds detected by the Mopra radio telescope in Australia, astronomers learned that each ring was actually the result of X-Ray reflections of a different dust cloud. Knowing that X-rays travel at the speed of light, this lets them know what the distance to different clouds is, and the X-ray echo then lets them determine the relative position of Circinus X-1 to the clouds. By analyzing the rings and the combined radio data and using simple geometry, researchers managed to accurately determine the distance of Circinus X-1 from Earth. These results have been published in The Astrophysical Journal and are available online.

The system is also interesting from another point of view: astronomers believe it is the youngest X-ray binary yet discovered, starting emitting X-rays only 2,500 years ago.

Tags: neutron starx-ray

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
Astronomy

Cosmic fireworks: zombie star explodes, creating massive filament structures

byMihai Andrei
5 months ago
Physics

Scientists Capture the X-ray Fingerprint of a Single Atom for the First Time — And This Could Change Everything

byTibi Puiu
6 months ago
News

Neutron Stars Could Be The Best Place to Look for Dark Matter

byTibi Puiu
7 months ago
News

How X-rays from Nuclear Blasts Could Save Earth from a Killer Asteroid

byTibi Puiu
8 months ago

Recent news

This beautiful rock holds evidence of tsunamis from 115 million years ago

May 20, 2025

New Version of LSD Boosts Brain Plasticity Without the Psychedelic Trip

May 20, 2025

The World’s First Mass-Produced Flying Car Is Here and It Costs $1 Million

May 20, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.