ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Orbiting supermassive black holes confirmed by astronomers for the time

This is one slow dance.

Tibi PuiubyTibi Puiu
June 28, 2017
in News, Remote sensing, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Quasars “snack” regularly, instead of “feasting in one gulp”
Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes
Astronomers are on the lookout for low-frequency gravitational waves generated by merging supermassive black holes
Quantum theory takes out singularity, suggests black holes are wormholes

After more than a decade of work, astronomers report the first measurement of the orbital motion between two supermassive black holes. The ungodly pair is found roughly 750 million light-years from Earth at the heart of a galaxy called 0402+379 and their cosmic dance could shed fundamental secrets about the nature of galaxies and how supermassive black holes form.

It takes two to tango

Artist impression of two supermassive black holes orbiting a common center of mass. Credit: Josh Valenzuela/UNM
Artist impression of two supermassive black holes orbiting a common center of mass. Credit: Josh Valenzuela/UNM

“For a long time, we’ve been looking into space to try and find a pair of these supermassive black holes orbiting as a result of two galaxies merging,” said University of New Mexico Professor Greg Taylor. “Even though we’ve theorized that this should be happening, nobody had ever seen it until now.”

Last year’s landmark discovery was the detection of gravitational waves by scientists working with the LIGO project. The discovery confirmed a 100-year-old prediction put forth by Albert Einstein on the basis of his theory of general relativity. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation, and the waves recorded by LIGO were the result of two stellar-mass black holes colliding in space.

Thanks to this groundbreaking research published in the Astrophysical Journal, we will be able to understand what processes lead to the merger of supermassive black holes that create ripples in the fabric of space-time.

To capture this unique event, the astronomers turned to the Very Long Baseline Array (VLBA), which is a system made of 10 radio telescopes scattered across the U.S. that act in unison. As early as ten years ago, the researchers were able to record several radio signal frequencies which the supermassive black holes emit. In time, the black holes’ trajectories were plotted, which confirmed we were dealing with a binary system — two black holes orbiting each other.

The minute orbital motion of the two black holes was captured using radio telescopes like this one. Credit: National Radio Astronomy Observatory.
The minute orbital motion of the two black holes was captured using radio telescopes like this one. Credit: National Radio Astronomy Observatory.

“When Dr. Taylor gave me this data I was at the very beginning of learning how to image and understand it,” said graduate student Karishma Bansal . “And, as I learned there was data going back to 2003, we plotted it and determined they are orbiting one another. It’s very exciting.”

A slow dance

The discovery is the smallest ever recorded movement of an object across the sky, also known as angular motion. That’s because the black hole pair’s orbital period is around 24,000 years so even though astronomers observed the black holes for well over a decade, they were only able to discern the slightest curvature in their obit.

“If you imagine a snail on the recently discovered Earth-like planet orbiting Proxima Centauri – a bit over four light years away – moving at one centimeter a second, that’s the angular motion we’re resolving here,” said Roger W. Romani, professor of physics at Stanford and co-author of the paper.

The two supermassive black holes have a combined mass of about 15 billion times that of our sun or 15 billion solar masses. That in itself is striking but it’s the technique which made the observation possible that’s of the most interest. Similar work will allow us to understand supermassive black holes and the galaxies they reside within, including our very own Milky Way. For instance, both the Andromeda and the Milky Way Galaxies each have a supermassive black hole at their center. In a few billion years from now, the two galaxies will collide and their two supermassive black holes should merge in an event similar to the one observed presently.

“Supermassive black holes have a lot of influence on the stars around them and the growth and evolution of the galaxy,” explained Taylor. “So, understanding more about them and what happens when they merge with one another could be important for our understanding for the universe.”

Tags: black holesupermassive black hole

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

We Could One Day Power a Galactic Civilization with Spinning Black Holes

byTibi Puiu
3 weeks ago
News

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

byTibi Puiu
2 months ago
News

What would happen if a (small) black hole passed through your body?

byMihai Andrei
3 months ago
News

New research suggests more supermassive black holes than we ever knew

byJordan Strickler
4 months ago

Recent news

AI-generated image.

Does AI Have Free Will? This Philosopher Thinks So

May 13, 2025

Ancient British Miners Shipped Tin All the Way to the Pharaohs

May 13, 2025

The UK just trained a health AI on 57 million people to predict disease

May 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.