ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astronomy

Nova seen Expanding right from the Beginning for the First Time

Tibi PuiubyTibi Puiu
October 28, 2014 - Updated on July 25, 2023
in Astronomy, News, Remote sensing, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Here’s something you don’t see everyday – for the first time, astronomers witnessed how a nova is formed right from the onset, capturing and detailing its expansion. The white dwarf turned nova is located some 14,800 light-years away and its study is set to reveal many things about how novas form.

The star is dead, long live the nova!

Artist impression of a dwarf star 'feeding' on donor star. Credit: David A. Hardy / astroart.org
Artist impression of a dwarf star ‘feeding’ on donor star. Credit: David A. Hardy / astroart.org

Stars shine due to the nuclear fusion reactions in their cores, which process hydrogen into helium, releasing energy in the process. When the hydrogen is used up, sun-like stars slough off their outer envelopes, and become very small, very hot “white dwarfs.” These white dwarfs are basically the core that remains of a star after it had used up all its available hydrogen. Now, stars often come in pairs – these are called binary systems. More often than not, when a white dwarf is gravitational tugged with a larger neighbor, say a red giant (a star that’s at the end of its life, but at a stage before shrinking into a white dwarf), the dwarf will act as a vampire and suck hydrogen from its compannion. The white dwarf thus starts accumulating a rising “ocean” of hydrogen on its surface. Once the hydrogen ocean become deep enough, the rising pressure will hit a critical level that will cause the dwarf’s surface to expand in an explosion similar to a thermonuclear bomb. The white dwarf is now reborn, hence the name – “nova” comes from the latin “new star”.

[RELATED] The most powerful stars are actually vampire binary systems

Novas should not be confused with their more spectacular brethren, supernovas. Supernovas are among the most powerful and spectacular events in the universe, and aren’t very common. They represent a dramatic culmination of a star’s life, after all of its nuclear fuel is spent and the outward pressure is no longer able to counteract the gravity. This causes the star to suddenly collapse so fast that it makes enormous shock waves that blow the outer part of the star into space at 20,000 kilometers per second (50 million miles per hour)! Needless to say, supernovas can only happen once, but a dying star can sometimes explode in novas more than once. It’s a key difference.

A stroke of luck

Nova Delphini dominates in this color view through a 17″ telescope. Your eyes won’t quite deliver that kind of view, unfortunately. (Credit: Virtual Telescope Project)
Nova Delphini dominates in this color view through a 17″ telescope. Your eyes won’t quite deliver that kind of view, unfortunately. (Credit: Virtual Telescope Project)

No one was able to witness a nova from its very onset, until Aug. 14, 2013, when Japanese amateur astronomer Koichi Itagaki detected an object that was dubbed Nova Delphinus 2013. Itagaki was the man of the moment – he was looking at the right patch of the sky at the very right moment and was able to see and capture the nova that had just flashed into existence hours before. Shortly after Itagaki’s discovery, scientists at the Mt. Wilson Observatory in the Angeles National Forest were notified and immediately turned their scope on the nova which they studied for the following weeks. Using the Center for High Angular Resolution Astronomy array, which consists of six 1-meter telescopes, immense volumes of data were gathered that allowed the astronomers to reconstruct the first three nights following the nova’s birth. In total, the nova expansion was followed for 27 nights over two months.

Here’s how it progressed:

  • In its first day the nova was the size of Earth’s orbit;
  • Two days later it was the size of Mars’ orbit;
  • Only two week later it was the size of Jupiter’s orbit
  • Day 43 and Nova Delphinus was as large as Neptune’s orbit – the most distant planet in our solar system (sorry, Pluto!) – or a x20 increase from its initial size.
delphinus_nova
Time evolution of the two-component model of Nova Delphini 2013; the time since the explosion (in days) is indicated in each panel; intensity refers to the flux per unit area. Image credit: G. H. Schaefer et al.

Peculiar as it may seem, the Nova’s surface isn’t spherical, being 13% longer than wide. There’s a perfectly reasonable explanation: it means the nova didn’t expand uniformly and reactions differ across the entire surface. On previously studied, older novas this asymmetry was pinned to dust and debris as they expand over long stretches of time. Since Nova Delphinus is asymmetric from birth, something else is at play.

RelatedPosts

Supernova shockwave recorded for the very first time
Physicists create a supernova in a jar
Farthest supernova discovered by Hubble helps unravel Universe secrets
Thank exploding stars for your teeth and bones

“The fact that we see it two days after shows that the explosion itself is not symmetric – which gives you clues about how material is being ejected from the surface of the white dwarf,”said lead author Gail Schaefer, an astronomer at Georgia State University.

Schematic view of Nova Delphini: Tendrils of gas from a sunlike star (right) are pulled toward a compact white dwarf star (invisible within the hot disk at left). Hydrogen piles up on the dwarf’s surface until it explodes like an H-bomb. (Credit: NASA/CXC/M.Weiss)
Schematic view of Nova Delphini: Tendrils of gas from a sunlike star (right) are pulled toward a compact white dwarf star (invisible within the hot disk at left). Hydrogen piles up on the dwarf’s surface until it explodes like an H-bomb. (Credit: NASA/CXC/M.Weiss)

Nova Delphinus might once again erupt in a spectacle of light, but it’s highly unlikely this will happen during our lifetimes. The nova was described in a paper published Nature.

Dr Theo ten Brummelaar of Georgia State University stated that, “The recent information enable us to study in detail exactly how the fireball evolves as the gas expands and cools. It seems like the ride is a lot more complex and jarring for the gas than the simple models used previously would have predicted.”

Scientific reference: G. H. Schaefer et al. The expanding fireball of Nova Delphini 2013. Nature, published online October 26, 2014; doi: 10.1038/nature13834

Tags: novasupernova

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

byOrsola De Marco
4 weeks ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
1 month ago
News

Astronomers Spotted a Ghostly Star Orbiting Betelgeuse and Its Days Are Already Numbered

byTudor Tarita
2 months ago
SNR 0509-67.5
News

Astronomers Found a Star That Exploded Twice Before Dying

byJordan Strickler
2 months ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.