ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Remote sensing

NASA’s great observatories combine to probe deeper in the Universe

Tibi PuiubyTibi Puiu
October 29, 2013
in Remote sensing, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

New NASA satellite mapped the oceans like never before
US space flight and ISS missions are dependent on Russia. What happens if the country pulls a squeeze?
ISS crew took to their escape pods this weekend after space debris collision alert
Astronauts set to return home after 520 days Mars mock-up mission
These are NASA Hubble Space Telescope natural-color images of four target galaxy clusters that are part of an ambitious new observing program called The Frontier Fields. NASA's Great Observatories are teaming up to look deeper into the universe than ever before.  The foreground clusters range in distance from 3 billion to 5 billion light-years from Earth. (c) NASA/ESA
These are NASA Hubble Space Telescope natural-color images of four target galaxy clusters that are part of an ambitious new observing program called The Frontier Fields. NASA’s Great Observatories are teaming up to look deeper into the universe than ever before. The foreground clusters range in distance from 3 billion to 5 billion light-years from Earth. (c) NASA/ESA

Each of NASA’s Great Observatories – Hubble, Spitzer and Chandra – have been designed to peer through the Universe in a characteristic manner. The telescopes have provided along the years massive amount of astronomical data and have helped scientists make important discoveries. What if you combine each of the telescopes’ strong points to assemble one massive probe capable of seeing farther in the Universe than ever before? That’s exactly what  The Frontier Fields ambitious space program will undertake in the following three years, combining the observational power of all three major NASA telescopes along with natural gravitational lenses to study six massive clusters of galaxies.

“The Frontier Fields program is exactly what NASA’s Great Observatories were designed to do; working together to unravel the mysteries of the universe,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “Each observatory collects images using different wavelengths of light with the result that we get a much deeper understanding of the underlying physics of these celestial objects.”

The program will tackle galaxy clusters that are among the most massive assemblages of matter known. Because of their humongous mass, these galaxy clusters (hundreds to thousands of galaxies bound together by gravity), exert powerful gravitational fields which can be used to brighten and magnify more distant galaxies so they can be observed. This is called gravitational lensing  and because of it  light rays that would have otherwise not reached the observer are bent from their paths and towards the observer.

Pandora’s Cluster. (c) NASA
Pandora’s Cluster. (c) NASA

The first object the astronomers will be directing their view towards is  Abell 2744 or  Pandora’s Cluster. This giant cluster is actually thought to be the result of four distinct galaxy clusters that piled-up over the span of 350 million years.  Studying this cluster, astronomers hope they can discover galaxies that were formed just a few hundred millions years after the Big Bang.

“The idea is to use nature’s natural telescopes in combination with the great observatories to look much deeper than before and find the most distant and faint galaxies we can possibly see,” said Jennifer Lotz, a principal investigator with the Space Telescope Science Institute in Baltimore, Md.

Each Great Observatory will have its role to play. Hubble tells astronomers in which way to direct their view and how many galaxies or stars are born in a system. Spitzer can relay how old these cosmic bodies are. Chanda, using its  X-ray wavelengths instruments, will image the clusters and tell astronomers what their  mass and gravitational lensing power is.

“We want to understand when and how the first stars and galaxies formed in the universe, and each great observatory gives us a different piece of the puzzle,” said Peter Capak, the Spitzer principal investigator for the Frontier Fields program at NASA’s Spitzer Science Center at the California Institute of Technology, Pasadena.

 

Tags: Chandra X-ray Observatoryesagalaxy clustergravitational lensingHubble telescopenasaSpitzer space telescope

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Agriculture

Astronauts May Soon Eat Fresh Fish Farmed on the Moon

byTudor Tarita
1 month ago
Future

NASA Captured a Supersonic Jet Breaking the Sound Barrier and the Image Is Unreal

byTibi Puiu
1 month ago
News

NASA’s Curiosity Rover Spotted Driving Across Mars From Space for the First Time

byTibi Puiu
1 month ago
Climate

Trump’s Budget Plan Is Eviscerating NASA and NOAA Science

byMihai Andrei
2 months ago

Recent news

So, Where Is The Center of the Universe?

June 12, 2025

Dehorning Rhinos Looks Brutal But It’s Slashing Poaching Rates by 78 Percent

June 12, 2025

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

June 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.