Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Space Astronomy

Pulsars with black holes could hold the ‘holy grail’ of gravity

Dragos Mitrica by Dragos Mitrica
December 5, 2014
in Astronomy, Astrophysics, News
Reading Time: 2 mins read
A A
Share on FacebookShare on TwitterSubmit to Reddit

Pulsars and black holes, two of the most enigmatic celestial bodies in the Universe may actually hold the key to understanding how Einstein’s theory of relativity and gravity interact.

Artistic depiction of a pulsar and the emitted radiation. Image via National Radio Astronomy Observatory.

A pulsar is a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation. Pulsars are from when a star that turns becomes a supernova and then collapses into a neutron star; the neutron star maintains its angular momentum, but because it has lost most of its mass, it starts to spin incredibly fast –  usually between a 2 and 50 times per second! The longest known spin period is just over 8 seconds. Due to this spin, pulsars are also excellent time keepers, as they emit intermittent light at regular intervals. Now, researchers believe that pulsars could be used to put Einstein’s theory of relativity to the test, especially if a pulsar would be found in the vicinity of a black hole. The only problem is that so far, this scenario has never been encountered.

Sorry to interrupt, but you should really...

...Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

“Pulsars act as very precise timekeepers, such that any deviation in their pulses can be detected,” Diego F. Torres, ICREA researcher from the Institute of Space Sciences (IEEC-CSIC), explains. “If we compare the actual measurements with the corrections to the model that we have to use in order for the predictions to be correct, we can set limits or directly detect the deviation from the base theory.”

Deviations mentioned by Torres occur when there is an object with significant mass close to the pulsar; in the lack of a black hole, that’s usually a white dwarf or another neutron star. By analyzing the interactions between pulsar-white dwarf or pulsar-neutron star interactions, astrophysicists can put not only the theory of gravity, but also Einstein’s relativity to the test. In the theory of relativity, the gravitational movement of a body results from the accelerating force exerted by the gravitational fields and nothing else. It is relatively constant in direction and magnitude. In other words, if you set up a free-fall experiment in a laboratory, the results will be independent on where the laboratory is in space and time and will depend only on the gravitational force(s).

ADVERTISEMENT

This has been confirmed by previous observations, but in a new study, Torres and his colleague Manjari Bagchi argue that if you really want to put this idea to the test, you need to find a pulsar-black hole system; all that’s left now… is to actually find one.

ADVERTISEMENT

Tags: black wholepulsarTheory of Relativitywhite dwarf
ShareTweetShare
Dragos Mitrica

Dragos Mitrica

Dragos has been working in geology for six years, and loving every minute of it. Now, his more recent focus is on paleoclimate and climatic evolution, though in his spare time, he also dedicates a lot of time to chaos theory and complex systems.

ADVERTISEMENT
ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.