Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Planetary fragments orbiting dead star hints at what Earth’s final days might look like

The surviving fragments of planet orbiting a white dwarf have been found by a team of astronomers.

Tibi Puiu by Tibi Puiu
April 5, 2019
in News, Space

Artist impression of planetary fragment orbiting a white dwarf. Credit: University of Warwick/Mark Garlick.
Artist impression of planetary fragment orbiting a white dwarf. Credit: University of Warwick/Mark Garlick.

Astronomers have discovered a planetary body orbiting a white dwarf — the remaining compact core of a deaf low-mass star. This discovery hints at what conditions Earth might encounter when the Sun begins to die, billions of years from now.

Planetary leftovers

The observable universe is littered with white dwarf stars, however, this was one of the few rare occasions that scientists have discovered orbiting debris around such a star. The planetesimal, which lies 410 light-years from Earth in the constellation Virgo, is believed to be no larger than a couple of hundreds of miles in diameter.

When a star similar in size to the Sun runs out of fuel, it starts expanding greatly in size into a red giant. As it does so, its intense gravity is capable of ripping apart any closely orbiting planets. Astronomers think that this is what happened to the small rocky body that they’ve observed, which probably used to be a dense planet.

When our sun will go through the same process in about 5 billion years, it will obliterate everything inside Mars’ orbit and disrupt the orbit of planets further out. The survival of life on Earth under these conditions is out of the question and scientists are still debating whether our planet will physically survive or be devoured by the sun. These latest findings suggest a bleak outcome is very likely.

“The star would have originally been about two solar masses, but now the white dwarf is only 70% of the mass of our Sun. It is also very small – roughly the size of the Earth – and this makes the star, and in general all white dwarfs, extremely dense,” Manser said in a statement.

“The white dwarf’s gravity is so strong – about 100,000 times that of the Earth’s – that a typical asteroid will be ripped apart by gravitational forces if it passes too close to the white dwarf.”

In order to find the planetesimal, researchers led by University of Warwick astrophysicist Christopher Manser employed a method called spectroscopy, which involves analyzing the different wavelengths of light emitted by an object. With the help of the Gran Telescopio Canarias in La Palma, Spain, the team of astronomers detected changes in the color of light emitted by a disc around the white dwarf known as SDSS J122859.93+10432.9, orbiting with a period of two to three minutes. The disc has a comet-like tail and is mostly made of iron, nickel, and other metals. It is the second solid remnant of a planet to have ever been discovered orbiting a white dwarf.

“The general consensus is that 5-6 billion years from now, our Solar System will be a white dwarf in place of the Sun, orbited by Mars, Jupiter, Saturn, the outer planets, as well as asteroids and comets. Gravitational interactions are likely to happen in such remnants of planetary systems, meaning the bigger planets can easily nudge the smaller bodies onto an orbit that takes them close to the white dwarf, where they get shredded by its enormous gravity,” Manser said.

Other objects might still orbit the dying distant star. However, the white dwarf is so faint that astronomers are unable to see anything orbiting farther out with their current tools. In the future, Manswer and colleagues plan on using spectroscopy to discover other planetary fragments orbiting white dwarfs.

“Learning about the masses of asteroids, or planetary fragments that can reach a white dwarf can tell us something about the planets that we know must be further out in this system, but we currently have no way to detect,” Manser concluded.

The findings appeared in the journal Science.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Three ‘Super-Earths’ Found Orbiting One Star
  2. Gas giants orbiting young star may require astronomers to rethink planetary formation
  3. Hubble captures the death of a star, offering a glimpse of our sun’s final days
  4. New class of star-stripped super-Earths discovered
  5. Scientists find a potentially habitable planet orbiting a dying star
Tags: earthplanetwhite dwarf

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW