ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

More green spaces can help some cities keep cool

Cities can be stifling.

Alexandru MicubyAlexandru Micu
September 5, 2019
in News, Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers looking into how to help keep our cities cool say that more green spaces can help, although not everywhere.

Image credits Khusen Rustamov.

The urban heat island effect is a phenomenon through which the temperature in a city is noticeably higher than in the surrounding rural area. Which is, obviously, very irritating.

In a bid to find out how to control the effect, an international team of researchers looked at the role of precipitation and population size have on city temperatures compared with the surrounding countryside. All in all, they report that more green spaces can help bring city temperatures down, but not everywhere.

Plant some plants

“We already know that plants create a more pleasant environment in a city, but we wanted to quantify how many green spaces are actually needed to produce a significant cooling effect,” says Gabriele Manoli, former postdoc with the Chair of Hydrology and Water Resources Management at ETH Zurich and lead author of the study.

When urban heat island effects compound with the sort of heatwaves that hit most of Europe this summer, it can pose a very real and deadly threat to the elderly, sick, and other vulnerable groups.

The team looked at urban heat islands across the globe and at the different heat-reduction strategies they employ. The effectiveness of these strategies depends heavily on regional climate, they explain.

Manoli and his team — with members from ETH Zurich, Princeton University and Duke University — studied data from around 30,000 cities worldwide and their surrounding environments. The factors they analyzed include average summer temperatures, population size, and average annual rainfall.

The larger the city, the more dramatic its urban heat island, the authors explain — but also more rainfall in the region. As a rule of thumb, more rain means more plant growth, meaning that areas surrounding large cities are much cooler than them. This effect is the strongest when annual rainfall averages around 1500 millimeters (as in Tokyo), but does not increase further with more rain.

RelatedPosts

New nanodevice converts wasted heat into more battery life
Atom-thin insulators pave the way to new, thinner devices
The forgotten history of the black locust tree: From vital to invasive to important once more
Girls love ecogeeks! No, really

Cities in very dry regions (like Phoenix, Arizona) can, through carefully-targeted planting efforts, bring their average temperatures below that of the surrounding countryside. Those surrounded by tropical forests on the other hand (such as Singapore) would need far more green spaces to reduce temperatures — but the authors warn that this would also increase humidity.

Therefore, cities located in tropical zones should look to other cooling methods, such as increased wind circulation, more use of shade, and new heat-dispersing materials.

One of the main takeaways from the study, Manoli explains, is a preliminary classification of cities to help guide planners on possible approaches to mitigate the urban heat island effect.

“There is no single solution,” Manoli says. “It all depends on the surrounding environment and regional climate characteristics.”

“Even so, searching for solutions to reduce temperatures in specific cities will require additional analysis and in-depth understanding of the microclimate. Such information, however, is based on data and models available to city planners and decision-makers only in a handful of cities, such as Zurich, Singapore or London.”

The team is now working to determine which types of plant are most useful for reducing the heat island effect.

The paper “Magnitude of urban heat islands largely explained by climate and population” has been published in the journal Nature.

Tags: citygreenheatislandurban

Share20TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

black and white image of women gutting and descaling fish
Culture & Society

Scotland’s “Herring Lassies” Who Defied Gender Rules and Built an Industry

byMihai Andrei
3 days ago
Plants and Fungi

The forgotten history of the black locust tree: From vital to invasive to important once more

byShiella Olimpos
1 week ago
Offbeat

Brazil’s ‘Big Zero’ Stadium on the Equator Lets Teams Change Hemispheres at Half Time

byMihai Andrei
2 weeks ago
Animals

These wolves in Alaska ate all the deer. Then, they did something unexpected

byMihai Andrei
2 weeks ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.