ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Thank exploding stars for your teeth and bones

Most of the calcium in the universe may have been generated by massive exploding stars.

Tibi PuiubyTibi Puiu
August 5, 2020 - Updated on July 25, 2023
in News, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Artist’s interpretation of the calcium-rich supernova 2019ehk. Credit: Aaron M. Geller/Northwestern University

Astronomer Carl Sagan once famously said that “we are all made of star stuff”. This statement poetically sums up the fact that the carbon, nitrogen and oxygen atoms in our bodies, as well as atoms of all other heavy elements, were forged inside previous generations of stars.

According to a new study, about half of the calcium in the universe was dispersed by supernovae — huge explosions that occur at the end of a massive star’s lifetime, when its nuclear fuel is exhausted and it is no longer supported by the release of nuclear energy.

Happy accidents

Astronomers have always been aware that supernovae are responsible for creating and dispersing heavy elements like gold or platinum. However, the fusion of calcium has always been something of a mystery due to lacking evidence. The fact that supernovae observations are so rare made the challenge even greater.

But as it sometimes happens, a happy accident got the researchers out of a rut. Last year, Joel Shepherd, an amateur astronomer, noticed a bright burst with his telescope while he was observing the Messier 100 spiral galaxy.

Shepherd immediately shared his observations with the astronomy community, which quickly identified the bright orange dot as a supernova — and what a rare occasion, since the sighting was made within hours of an explosion.

Follow-up observations of the stellar explosion, known as SN2019ehk, were performed by NASA’s orbiting Neil Gehrels Swift Observatory, the Lick Observatory in California, and the W.M. Keck Observatory in Hawaii in optical light. The Swift observatory performed X-ray and ultraviolet light observations of the event, which revealed it was a calcium-rich supernova.

Hubble Space Telescope image of SN 2019ehk in its spiral host galaxy, Messier 100. The image is a composite made of pre- and post-explosion images. Credit: CTIO/SOAR/NOIRLab/NSF/AURA/Northwestern University/C. Kilpatrick/University of California Santa Cruz/NASA-ESA Hubble Space Telescope.

According to the study published in The Astrophysical Journal by an international team of more than 70 scientists, stars responsible for calcium-rich supernovae shed layers of the mineral in the last months before the explosion. The heat and pressure of the supernova are what actually drives the fusion of calcium.

RelatedPosts

Newly imaged nebula looks like a manatee in space
Physicists create a supernova in a jar
New type of supernova discovered. Hint: it’s tiny and faint
Astronomers Found a Star That Exploded Twice Before Dying

“Calcium-rich supernovae are so few in number that we have never known what produced them,” said Dr. Wynn Jacobson-Galan, a researcher at Northwestern University.

“By observing what this star did in its final month before it reached its critical, tumultuous end, we peered into a place previously unexplored, opening new avenues of study within transient science.”

Typically, stars generate small amounts of calcium as they burn through their helium supply. However, the new study shows that copious amounts of calcium are created and released within a matter of seconds by supernovae.

“Before this event, we had indirect information about what calcium-rich supernovae might or might not be. Now, we can confidently rule out several possibilities,” said Dr. Raffaella Margutti, also from Northwestern University.

“The explosion is trying to cool down. It wants to give away its energy, and calcium emission is an efficient way to do that,” Dr. Margutti said.

Although the Hubble Space Telescope had been observing M100 for the past 25 years, it somehow missed SN2019ehk’s brief luminosity. Luckily, one keen astronomer was up to the challenge, a marvelous discovery followed out of it. Subsequent observations with Hubble of the supernova site also revealed clues about the former star’s true nature.

It was likely a white dwarf or very low-mass massive star,” Jacobson-Galan said. “Both of those would be very faint.”

“Without this explosion, you wouldn’t know that anything was ever there,” Margutti added. “Not even Hubble could see it.”

Tags: calciumsupernova

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

byOrsola De Marco
3 weeks ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
4 weeks ago
News

Astronomers Spotted a Ghostly Star Orbiting Betelgeuse and Its Days Are Already Numbered

byTudor Tarita
2 months ago
SNR 0509-67.5
News

Astronomers Found a Star That Exploded Twice Before Dying

byJordan Strickler
2 months ago

Recent news

Pluto’s Moons and Everything You Didn’t Know You Want to Know About Them

September 11, 2025

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

September 11, 2025

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

September 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.