ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Robotics

Scientists develop new, adorable class of soft robots

This cute, self-powered octopus-like robot could be a game changer.

Mihai AndreibyMihai Andrei
August 24, 2016
in News, Robotics, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

Harvard researchers have revealed a cute, self-powered octopus-like robot. The robot is surprisingly resilient and can operate for up to eight minutes by itself, opening up new possibilities in robot design.

 This image shows the octobot, an entirely soft, autonomous robot. A pneumatic network (red) is embedded within the octobot’s body and hyperelastic actuator arms (blue). Credit: Ryan Truby, Michael Wehner, and Lori Sanders, Harvard University.
This image shows the Octobot, an entirely soft, autonomous robot. A pneumatic network (pink) is embedded within the Octobot’s body and hyperelastic actuator arms (light blue). Credit: Ryan Truby, Michael Wehner, and Lori Sanders, Harvard University.

Soft robots could revolutionize the industry. They’re more adaptable to many natural environments, and are ironically more resilient than their solid counterparts because they can adapt to various environments. However, there are some very big hurdles against soft robots – especially batteries.

“Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials,” researchers write in the study. “Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources.”


You can’t really fit conventional batteries on a soft robot… because batteries are hard. So, the big challenge is making these squishy bots fully autonomous — something  Jennifer Lewis and her colleagues at Harvard University managed to overcome, and created the cute ‘octobot’ you see above.

“Creating a new class of fully soft, autonomous robots is a grand challenge, because it requires soft analogues of the control and power hardware currently used,” Lewis added in the study.

They used a combination of techniques to develop it, including 3D printing of the pneumatic networks within the soft body. Octobot can operate autonomously for 4-8 minutes, but that run-time could be significantly improved by a more sophisticated design of fuel usage.

Like with any nascent technology, there are no immediate applications in sight, but in the long run, soft robots could really be a game changer. Speaking with ZME Science, Ryan Truby, author and Ph.D. candidate at Harvard University’s Paulson School of Engineering and Applied Sciences discussed potential applications for the technology:

“Soft robotics is definitely a field in its infancy,” he said. “The potential applications that are particularly exciting for soft robotic systems are those that sit at the human interface, such as wearable and biomedical technologies. Because these robotic systems are based on soft materials like silicone rubbers, they can be inherently safer than traditional robotic systems and possibly better suited for such applications. Additionally, we are finding that soft robots have potential application in environments where conventional robots might fail, such as underwater conditions. “

Michael Wehner, the co-lead author on the paper added:

“As Ryan points out, this is a new field so the “Killer App” is yet to be determined. Some early avenues to explore are in fields involving human-robot-interaction, a long-time focus area of mine.”

“As inherently soft, soft robots pose less risk to both humans and the robots themselves in unplanned interactions, which must be accounted for in unstructured environments.”

Another interesting point about the robot is its fuel. The Octobot system uses concentrated hydrogen peroxide as fuel, which is already a pretty eco-friendly option, the byproducts being oxygen, water and heat. The hydrogen peroxide decomposes into oxygen gas and water vapor, as regulated by the microfluidic “soft controller,” powering actuation. This approach also opens up an intriguing possibility, as Truby explains:

RelatedPosts

Kawasaki Unveils a Rideable Robot Horse That Runs on Hydrogen and Moves Like an Animal
The army’s amazing 1962 four-legged Pedipulator beat Star Wars to it by 15 years
Shape-shifting “Terminator robot” escapes prison just like in the movies
Japan’s Restaurants Are Hiring Cat Robots — And They’re Pretty Good Servers

“I think that in the future, it would be neat to see if a robot like the Octobot could possess the ability to produce hydrogen peroxide on-board using reagents from its environment. This could be done, for example, using a biochemical reaction that is regulated within the soft robot. However, this would be a tremendous challenge!”

Journal Reference: An integrated design and fabrication strategy for entirely soft, autonomous robots.

Tags: roboticssoft robot

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

Teen Influencer Watches Her Bionic Hand Crawl Across a Table on Its Own

byTudor Tarita
2 months ago
Future

China’s Humanoid Robots Stumble, Break Down, and Finish the World’s First Robot Half Marathon

byTibi Puiu
2 months ago
Science

Kawasaki Unveils a Rideable Robot Horse That Runs on Hydrogen and Moves Like an Animal

byTibi Puiu
2 months ago
Science

Japan’s Restaurants Are Hiring Cat Robots — And They’re Pretty Good Servers

byMihai Andrei
3 months ago

Recent news

AI ‘Reanimated’ a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

June 17, 2025

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

June 17, 2025

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

June 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.