ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Water may, ironically, be the root of Mars’ dreariness — it could have sabotaged its magnetic field

The theory shows that as long as Earth's interior stays hot, it should avoid this fate.

Alexandru MicubyAlexandru Micu
March 30, 2018
in Astrophysics, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

Mars’ lack of water and of a magnetic field could be linked, new research proposes.

Mars.
Image via Pixabay.

Despite being a pretty inhospitable place today, Mars used to have liquid water aplenty and an atmosphere. Taken together, these likely made the red planet not that unlike our own Earth — which is to say, ‘comfortable’. Sometime in the past, however, both the water and the air vanished. Our working theory is that it was caused by Mars’s magnetic field, which waned then disappeared roughly 4 billion years ago. Without it to insulate the planet, solar winds flayed it of its atmosphere, slowly turning it into the dry ball of dust and rock we see today.

Magnet..Oh…

It’s a compelling story, but there is one especially frustrating piece missing from it: what killed off the magnetic field? Last week, at the at the Lunar and Planetary Science Conference held in Texas, planetary scientist Joseph O’Rourke presented a new theory which could fill in this missing piece. He believes that the disappearance of the planet’s magnetic field is connected to its missing surface water.

To the best of our knowledge, planets produce their magnetic fields through the churning of their molten, ferrous cores. Convection — where the heated part of a molten material rises to the top, to be replaced by the denser, colder part on top — keeps this metal moving. And just like a dynamo, where you have moving iron, you get a magnetic field.

O’Rourke’s theory is that an influx of hydrogen, sourced by the splitting of water molecules deeper into the Martian mantle, could have stalled this dynamo — and with it, Mars’ magnetic field. Convection relies on differences in density to keep material (in our case, molten iron) moving. But if a lighter material — and it’s hard to get lighter than hydrogen — settles relatively close to the bottom of the convection cell, it can block denser material from sinking back down. It clogs the system.

 “Too much hydrogen and you can shut down convection entirely,” he said. “Hydrogen is a heartless killer.”

O’Rourke, from the Arizona State University in Tempe, worked together with Dan Shim, a colleague at the University, to determine where all this hydrogen could have come from. They believe it was sourced from water that was chemically locked in Martial minerals. While it would remain stable in the upper layers of the mantle, the incredible heat and pressures closer to the core could pull these water molecules out of their minerals, and then break them apart. The oxygen atom, being highly reactive, would go on to form new compounds — while the hydrogen atoms would build up near the core and stall convection.

This meddling hydrogen

So, was there enough water in Mars’ mantle for the job? The authors note that Mars’ crust is rich in olivine, a material that doesn’t bond very well with water, and so it remains relatively dry. At deeper levels, where there’s more pressure, this olivine transforms into the minerals wadsleyite and ringwoodite, which do hold more water. Deeper still, the mineral turns into bridgmanite and becomes dry again. According to the team, this bridgmanite layer should act as a buffer, keeping water away and insulating the convection cell. So far, the situation on (in?) Mars is very similar to that on Earth — the same minerals are involved,  and there’s no reason to believe that they would behave differently on Mars.

RelatedPosts

Martian minerals might bear signatures of ancient life
Scientists Used Lasers To Finally Explain How Tiny Dunes Form — And This Might Hold Clues to Other Worlds
Russia’s Phobos probe is alive! Contact established with the failed Russian craft
Grand Canyon Geology Lesson – brought to you by NASA

However, there is one important distinction between the two planets — Mars’ mantle cooled down significantly, while Earth’s remains hot. Temperature plays a key role here because it’s the combination of high pressure at high temperatures that prompts the transition to bridgmanite and later keeps it stable. In a progressively cool mantle, like Mars’, the bridgmanite layer would shrink and eventually disappear altogether.

Whether or not this mineral survived in Mars’ interior depends on how large the planet’s core is. We don’t yet know how large it is, but NASA’s InSight Mars lander, scheduled for launch on May 5th, may find out.

One interesting implication of O’Rourke’s theory is that if hydrogen did clog up the magnetic field, it did so surprisingly fast — previous research suggests that Mars’ magnetic field disappeared quite rapidly, over 100 million years’ time.

For now, we’ll have to wait for InSight to launch, and see if the theory stands up to measurements taken in the field. Whatever the results may be, one thing is certain: Mars’ stubborn lack of a magnetic field is bad for business. Hopefully, this research will offer some insight as to how we can fix it.

The paper “Suppressing the Martian Dynamo with Ongoing Hydrogenation of the Core by Hydrated Mantle Minerals” has been presented at the 49th  Lunar and Planetary Science Conference, The Woodlands, Texas, on March 21, 2018.

Tags: GeologyMars

Share29TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Geology

Scientists Used Lasers To Finally Explain How Tiny Dunes Form — And This Might Hold Clues to Other Worlds

byKimberly M. S. Cartier
5 days ago
News

Terraforming Mars Might Actually Work and Scientists Now Have a Plan to Try It

byTibi Puiu
2 weeks ago
News

A Decade After The Martian, Hollywood’s Mars Timeline Is Falling Apart

byAri Koeppel
3 weeks ago
News

Nature Built a Nuclear Reactor 2 Billion Years Ago — Here’s How It Worked

byMihai Andrei
1 month ago

Recent news

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

June 17, 2025

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

June 16, 2025

This new blood test could find cancerous tumors three years before any symptoms

June 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.