ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Physicists discover rare hypernucleus, a component of strange matter

Mihai AndreibyMihai Andrei
February 20, 2012 - Updated on June 11, 2023
in Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

It looks like not all is going bad for Italian researchers, after the trial of the seismologists: physicists from Italy have discovered the first evidence of a nucleus that doesn’t exist in nature and survives only for 10-10 seconds when created in a laboratory.

Strange matter

Hypernuclei contain all sorts of protons and neutrons, but unlike regular nuclei, they also contain at least a hyperon, a particle that consists of three quarks, including at least one strange quark; hypernuclei are considered to be the core of strange matter that may exist in distant parts of the universe and could prove valuable to researchers in understanding this phenomena. Whoa! Wait a minute, strange matter?

Let’s start from the beginning. You’ve probably learned in school that the world we see around us is built from ‘atoms’ – the building blocks of the Universe – which themselves consist of protons, neutrons and electrons. But scientists love to dig more and ask more questions, so they found other fundamental particles which build these particles. Among these smallest particles (that we know of at the moment, at least) are quarks, which go together and build neutrons and protons. Strange quarks are just a type of quarks, named so because, well, scientists have a sense of humor. Which gets us to our point: strange matter is a type of quark matter, usually thought of as a “liquid” of up, down, and strange quarks.

Hydrogen six Lambda

The particular hypernucleus analyzed here was called “hydrogen six Lambda” (6ΛH), and it was first predicted to exist in 1963. Now, researchers from the FINUDA experiment at the Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati (INFN-LNF) in Frascati, Italy have reported the first ever ‘sighting’ of such a phenomena, in a study published in the recent issue of Physical Review Letters.

As the name suggest, the atom is a species of Hydrogen which consists of six particles: four neutrons, one proton, and one Lambda (Λ) hyperon. Since the Hydrogen atom has only one proton and no neutrons, other species which do have neutrons are called ‘heavy hydrogen’, like deuterium (one neutron) and tritium (two neutrons). Since 6ΛH has four neutrons plus a L hyperon, physicists refer to it as “heavy hyperhydrogen.” The hyperon is practically a composite particle which contains one strange quark.

Without the L hyperon, it would practically be impossible to observe the Hydrogen atom with four neutrons, because it increases its lifetime from 10-22 seconds to 10-10 seconds.

The FINUDA experiment

The findings could shed light on strange matter, which many researchers believe to exist at the core of ultra-dense neutron stars. They can also serve as good tools to measure the current atomic model.

RelatedPosts

LHC signals hint at flaws in the Standard Model of Physics
New exotic subparticle confirmed by LHC scientists
How Black Holes and Neutron Stars Shine
Astronomers observe spinning neutron star suddenly slowing down

“The fact that a hypernucleus has a strange quark does give it interesting characteristics compared to normal nuclei, since it allows the component L particle to act as a probe that can go very deep into the nucleus to test the description that the single particle shell model gives of nuclear matter,” Botta said. “In this respect, the study of hypernuclear physics allows us to get information not directly accessible otherwise.”

Via Physorg

Tags: hypernucleusneutron starquarkstrange matterstrange quark

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
Astronomy

Cosmic fireworks: zombie star explodes, creating massive filament structures

byMihai Andrei
6 months ago
News

Neutron Stars Could Be The Best Place to Look for Dark Matter

byTibi Puiu
8 months ago
News

Physicists Observe Entangled Top Quarks for the First Time

byTibi Puiu
9 months ago
A striking artifact discovered in Panama, dated 700-1000 CE. "Winged Pendant, Gran Coclé," credit: Gilcrease Museum
Periodic Table

How Gold is made and how it got to our planet

byTibi Puiu
2 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.