Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Science News

LHC signals hint at flaws in the Standard Model of Physics

An intriguing signal reported at the LHC might signal some "cracks" in the Standard Model - the theory which describes how different forces interact with each other.

Mihai Andrei by Mihai Andrei
May 14, 2021
in News, Physics
Reading Time: 2 mins read
A A
Share on FacebookShare on TwitterSubmit to Reddit

An intriguing signal reported at the LHC might signal some “cracks” in the Standard Model – the theory which describes how different forces interact with each other.

A view inside the LHCb experiment’s muon detector at the Large Hadron Collider. Image credits: CERN.

The LHC has already accumulated a trove of valuable data, and researchers are still working on analyzing it. Now, a study on data gathered during 2011–12 at the collider at CERN suggests that in some particular decays, some short-lived particles (B-mesons) create some particles (taus) more than others (muons); but according to the Standard Model, the decay should be happening at the same rate, so something is clearly not as expected. Let’s explain that a bit.

Quarks are elementary particles – they’re the smallest thing we know of, the very basis of subatomic particles. Hadrons are composite particles made of quarks. Mesons are a specific type of hadrons made from one quark and one anti-quark – and B-mesons are a type of mesons. They are very short-lived, so studying their decay is particularly difficult. The discrepancy that was observed is so small we can’t rule out a statistical fluctuation (a satisfying statistical threshold has not yet been reported).

ADVERTISEMENT

But physicists are excited because a similar thing has been reported at two other experiments: the ‘BaBar’ experiment at the SLAC National Accelerator Laboratory in Menlo Park, California, which reported it in 2012, and the ‘Belle’ experiment at Japan’s High Energy Accelerator Research Organization (KEK) in Tsukuba, which reported its latest results at a conference in May. LHCb’s result is “bang on” the previous two. as Mitesh Patel, a physicist at Imperial College London who works on the experiment, explained.

Sorry to interrupt, but you should really...

...Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

“A 2-sigma difference in a single measurement isn’t interesting by itself,” says Tara Shears, a particle physicist at the University of Liverpool, UK, and a member of the LHCb collaboration. “But a series of 2-sigma differences, found in different types of decay and independently by different people in a different experiment, become very intriguing indeed.”

The “2-sigma” difference is an indicator of accuracy used in control charts. When comparing 2-sigma vs 3-sigma control charts, 3-sigma control charts help ensure process stability whereas 2 sigma control charts are used to detect small shifts in the project or process. For such discoveries, 5-sigma is usually required, while this discovery only has 2.1-sigma. But as Patel said, a series of 2-sigma is worth much more than just one, isolated event.

Since the 1970s, experiments have time and again proved the accuracy of the standard model – with surprising consistency. However, the Standard Model is incomplete at best, and quite possibly inexact as well. Its failure to account for gravity and dark matter seems to suggest that it’s merely an approximation of some other, underlying, and even more intriguing truth.

ADVERTISEMENT

The finding will be published in Physical Review Letters this month (it’s already published on the arXiv pre-print server).

Tags: LHCmesonmuonquark
ShareTweetShare
Mihai Andrei

Mihai Andrei

Andrei's background is in geophysics, and he's been fascinated by it ever since he was a child. Feeling that there is a gap between scientists and the general audience, he started ZME Science -- and the results are what you see today.

ADVERTISEMENT
ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.