ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Rumors of imminent Higgs boson announcement run amok on science blogs. Discovery might be announced next week

Tibi PuiubyTibi Puiu
June 20, 2012 - Updated on October 27, 2017
in Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

The Higgs boson or the God particle, as it’s also been commonly referred to, is a hypothetical particle that endows other elementary particles with mass. Confirming its existence is of crucial importance to physicists at the moment, otherwise scientists would be forced to rethink another method of imputing mass to particles.  Last year, scientists at CERN registered a hint; a tiny hint of the Higgs boson, when Atlas and CMS, two experimental teams at the Geneva particle accelerator facility, interdependently registered unusual bumps in their data. In December, rumors had it that the elementary particle would soon be unveiled, only to warrant an official statement from Geneva that results are still far from conclusive.

The most elaborate ‘manhunt’ in history

A computer graphic shows a typical Higgs boson candidate event, including two high-energy photons. (C) CERN
A computer graphic shows a typical Higgs boson candidate event, including two high-energy photons. (C) CERN

Recently, a new wave of enthusiasm has sparked science blogs to speculate that we’re in for an imminent announcement from CERN that will once and far all decide if indeed this hypothetical particle exists or not. “The bottom line though is now clear: there’s something there which looks like a Higgs is supposed to look,” wrote Peter Woit, a mathematician and  Columbia professor. “If this years peaks are not exactly in the same place as last years then the combined significance could be considerably less,” reads a skeptical entry at the Vixra blog. Tomasso Dorigo, an experimental particle physicist, settled to offer his own take on the probability of such a find. These are just a few of the myriad of impressions currently circulating around the God particle.

These was sparked after a team of physicists gathered in a room at CERN on Friday to begin crunching new data from the Large Hadron Collider this year. They’ll be at it for a whole week. The new results should settle whether last year’s anomaly was indeed a simple fluke, or the scientists are on the right path; if so this would mark only the beginning of an even larger road ahead for the CERN researchers. Nevertheless, in all likelihood, these results will be made public at the International Conference on High Energy Physics, or Ichep, in Melbourne, Australia, starting July 4.

“Please do not believe the blogs,” Fabiola Gianotti, the spokeswoman for the team known as Atlas.

Personally, I’ve well went past getting too excited over simple rumors – only cold and officially released facts should matter at this time; it will keep you sane too.

How to find the Higgs boson

Dr. Higgs first theorized that if particles were to be hit hard enough, by the right amount of energy, its own quantum particle would be produced. With this goal in mind, the Large Hadron Collider accelerates protons to energies of four trillion electron volts around a 17-mile underground racetrack at CERN, before colliding them together.  The Atlas group hypothesized the Higgs boson’s mass at 124 billion electron volts, while the CMS group came up with 126 billion electron volts – a proton weighs in at one billion electron volts and an electron at half a million electron volts.

How can the scientists be certain that they’ve found Higgs boson? Well, it all lies in probability. To be certain, scientists need to find a 5 sigma signal in at least one channel of one experiment.  Wired‘s Adam Mann explains, “In the rigorous world of high-energy physics, researchers wait to see a 5-sigma signal, which has only a 0.000028 percent probability of happening by chance, before claiming a ‘discovery,'” or or one chance in 3.5 million that it is a fluke background fluctuation. Adding, “The latest Higgs rumors suggest nearly-there 4-sigma signals are turning up at both of the two separate LHC experiments that are hunting for the particle.”

RelatedPosts

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels
Large Underground Xenon experiment fails to detect dark matter
China plans to build world’s first super collider
LHC finds new type of matter after proton-lead collision

This week, the BaBar experiment, which has ran for a decade at US Department of Energy’s SLAC National Accelerator Laboratory, found hints of flaws in the Standard Model of Physics, after data revealed  certain particle decay happening at a pace far exceeding predictions. The excess decays has to be still confirmed, but they claim that data already rules out the Two Higgs Doublet Model.

Next month’s International Conference on High Energy Physics might host the announcement of the century for particle physics or the Higgs boson final resting place. We’re patiently waiting.

Interview with Professor Higgs, who explains what it will mean to him if scientists at CERN confirm the existence of the Higgs boson.

via New York Times

Tags: cernhiggs bosonlarge hadron colliderparticle physicsStandard Model of Physics

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

CERN Creates Gold from Lead and There’s No Magic, Just Physics

byMihai Andrei
3 months ago
News

Why Your Pasta Pot Always Has That Strange Salt Ring Inside

byTibi Puiu
6 months ago
Science

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels

byTibi Puiu
8 months ago
News

Physicists Observe Entangled Top Quarks for the First Time

byTibi Puiu
11 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.