ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Water-powered electric field bandage can help long-term wounds heal faster

Cheap, hi-tech bandages may be coming soon to a hospital near you.

Mihai AndreibyMihai Andrei
August 8, 2024
in Future, Health, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit

Researchers have developed an affordable bandage that uses an electrical field to speed up wound healing. The bandage has already been tested on animals and healed wounds 30% faster. This could make life better for millions of people — and also save a lot of money in hospitalization costs.

an electrical bandage held by a human hand
Photo of a water-powered, electronics-free dressing (WPED) for electrical stimulation of wounds. Image credits: Rajaram Kaveti.

Chronic wounds are a bigger problem than you think. Chronic wounds, such as diabetic ulcers, venous leg ulcers, and pressure sores, affect approximately 2% of the U.S. population. They are not only painful and difficult to deal with but can lead to complications and amputations — or worse. Chronic wound treatment costs over $28 billion annually in the US alone.

We’ve known for some time that the right electrical field can get wounds healing faster. Specialized dressings for chronic wounds that use electrical fields do exist, but they’re typically expensive and often available only in a hospital setting.

“Our goal here was to develop a far less expensive technology that accelerates healing in patients with chronic wounds,” says Amay Bandodkar, co-corresponding author of the work and an assistant professor of electrical and computer engineering at North Carolina State University. “We also wanted to make sure that the technology is easy enough for people to use at home, rather than something that patients can only receive in clinical settings.”

Smart bandages

Bandodkar and colleagues have developed a water-powered, electronics-free dressings (WPEDs) that electrically stimulate wounds, significantly enhancing the healing process.

The bandage consists of a biocompatible magnesium-silver/silver chloride battery and a pair of carbon-based stimulation electrodes. When water is added, the battery activates, creating a radial electric field that mimics the body’s natural electric field at the wound site. This field promotes cell migration, increases epidermal thickness and modulates inflammation — all crucial factors for rapid wound closure.

“That electric field is critical, because it’s well established that electric fields accelerate healing in chronic wounds,” says Rajaram Kaveti, co-first author of the study and a post-doctoral researcher at NC State.

RelatedPosts

Visual impairments on the rise in the US linked to diabetes
Frog Could Offer Diabetes Treatment Hope
The more you sit, the more likely you are to suffer chronic diseases
This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

You don’t need a lot of water for it to work. The dressings can be applied and activated with the simple touch of a moist fingertip. This user-friendly design ensures that patients can use it without the need for specialized equipment or training. Moreover, the dressings’ lightweight and flexible nature allows them to conform to various body parts, including curved surfaces like toes and heels.

“This ability to conform is critical, because we want the electric field to be directed from the periphery of the wound toward the wound’s center,” says Kaveti. “In order to focus the electric field effectively, you want electrodes to be in contact with the patient at both the periphery and center of the wound itself. And since these wounds can be asymmetrical and deep, you need to have electrodes that can conform to a wide variety of surface features.”

an electric bandage on a foot
Photo of WPED applied to a dummy wound on a human foot. Image credits: Rajaram Kaveti.

Putting it to the test

Because chronic wounds are a particularly big problem for diabetic patients, the bandage was tested on diabetic mice. The bandages sped up wound closure, reduced inflammation, and promoted the formation of new blood vessels. All of this encourages faster healing. It’s also cheap, the team says.

“But it is equally important that these bandages can be produced at relatively low cost — we’re talking about a couple of dollars per dressing in overhead costs,” says Bandodkar.

The potential applications of WPEDs extend beyond wound care. The technology could be adapted for use in other areas of tissue regeneration, such as nerve repair and bone healing. Additionally, further research may explore the use of WPEDs in preventing and treating wound infections, adding another layer of benefit to this already promising technology.

By combining affordability, ease of use, and effectiveness, these innovative dressings have the potential to transform the lives of millions of people suffering from chronic wounds. As further research and development continue, WPEDs may soon become a standard treatment option.

Journal Reference: Rajaram Kaveti et al, Water-powered, electronics-free dressings that electrically stimulate wounds for rapid wound closure, Science Advances (2024). DOI: 10.1126/sciadv.ado7538. www.science.org/doi/10.1126/sciadv.ado7538

Tags: bandagebatterychronic wounddiabetesElectrichealingsmart bandage

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Health

A Man With Type 1 Diabetes Produces His Own Insulin After Receiving Millions of Gene Edited Pancreatic Cells

byTudor Tarita
2 days ago
Inventions

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

byMihai Andrei
2 months ago
Future

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

byTibi Puiu
2 months ago
Health

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

byTibi Puiu
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.