ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists coax bacteria towards silicon-based life

Silly bacteria, carbon-based life is best life!

Alexandru MicubyAlexandru Micu
November 25, 2016
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Life — from what we know so far, it takes some carbon, some water, and a dash of other elements to make it happen. We’ve never seen it form from anything else, no matter where we’re searched. And yet, there is one element found in abundance on Earth that biological life makes surprisingly little use of: silicon.

martian
Image credits Gomez Santos / Pixabay.

Silicon is very similar in its chemical make-up to carbon, and shares its tetravalence — each atom can bond to four other atoms — meaning silicon could, in theory, form the basis for complex molecules fundamental to life — such as proteins and DNA. Organic carbon-silicone bonds have been used by chemists for decades now in anything from paints to computer hardware. But these are produced artificially, and we’ve yet to see similar bonds pop up in nature. No silicon-based life has evolved on the planet, which is only stranger when you factor in that after oxygen, silicon is the most bountiful element in the Earth’s crust.

This has left scientists with a dilemma for decades now: is silicon-based life possible, and if so, what would it look like?

To try and answer that question, a team from the California Institute of Technology, Pasadena, has managed to coax living cells into forming carbon-silicon bonds, showing for the first time how nature can incorporate this element into the basic building blocks of life.

“No living organism is known to put silicon-carbon bonds together, even though silicon is so abundant, all around us, in rocks and all over the beach,” says one of the researchers, Jennifer Kan from Caltech.

The team started by isolating a protein that occurs naturally in Rhodothermus marinus, a bacterium which inhabits Iceland’s hot springs. Known as a cytochrome c enzyme, the protein’s main role is to shuttle electrons through the cells. The team chose it because lab tests showed that it could help create the kind of bonds used to hook carbon and silicon atoms together.

After identifying the gene that codes cytochrome c, they pasted it into a culture of E. coli bacteria to see if it would lead to the creation of those bonds. The first few tries didn’t result in much progress, but the team kept altering the protein gene within a specific area of the E. coli‘s genome until they finally achieved their goal.

“After three rounds of mutations, the protein could bond silicon to carbon 15 times more efficiently than any synthetic catalyst,” Aviva Rutkin reports for New Scientist.

This new method of trying the two elements together (with much greater efficiency than before) could change the way we think about producing the goods that require them, such as fuels, pharmaceuticals, or agricultural fertilizers. It also shows that life could (at least in part) be based on silicon.

RelatedPosts

New capture technology scrubs atmospheric CO2 on the cheap
Biological wheels and motors imaged for the first time
Trees trade carbon through their roots, using symbiotic fungi networks
Silver nanoparticles change shape and get ‘consumed’ when destroying bacteria

“This study shows how quickly nature can adapt to new challenges,” one of the team, Frances Arnold, said in a press statement.

“The DNA-encoded catalytic machinery of the cell can rapidly learn to promote new chemical reactions when we provide new reagents and the appropriate incentive in the form of artificial selection. Nature could have done this herself if she cared to.”

Kan’s team had to really push the cells to create the bonds — this wasn’t something they were easily capable of doing on their own, or even very willing. Still, if the team continues to work with these kinds of bacteria, we could get an even better understanding of how life based on silicon might look like.

The full paper “Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life” has been published in the journal Science.

 

Tags: carbonE. Coliearthlifesilicon

Share1TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Environment

Humans Built So Many Dams, We’ve Shifted the Planet’s Poles

byTudor Tarita
4 weeks ago
landscape on saturn's moon titan
Chemistry

Scientists Just Showed How Alien Life Could Emerge in Titan’s Methane Lakes

byMihai Andrei
1 month ago
Astronomy

Earth Is Spinning Faster Than Usual. Scientists Aren’t Sure Why

byTudor Tarita
1 month ago
Biology

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

byTudor Tarita
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.