ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Pressure in protons’ cores is over ten times greater that that in neutron stars

More pressure than you during finals.

Alexandru MicubyAlexandru Micu
May 18, 2018
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

An experiment once thought to be impossible reveals that the protons have incredibly pressurized cores.

Pressure distribution.
Pressure distribution in the proton. The left end of the scale is the proton’s core, the right end corresponds to the proton’s edge.
Image credits V. D. Burkert et al., (2018), Nature.

Protons are the positively-charged elemental blocks of matter — only, they, in turn, consist of three smaller particles called quarks. Each is made up of two ‘up’ quarks and one ‘down’ quark bound by the strong nuclear force. However, beyond that, we simply don’t know much about the internal going-ons of protons. Given how hard it is to split one, it’s obvious that the three quarks are held tightly together.

But they’re bound together so strongly that, in the absence of something to push back, they would just collapse into a single point. To get to the bottom of things, one team of researchers reconciled two theoretical frameworks (one of which was actually considered impossible to implement directly) and then shot an electron through the proton. But the results were worth all the hassle.

“We have the medical 3D imaging technology that now allows the doctors to learn more in a non-invasive manner the structure of the heart,” study co-author Latifa Elouadrhiri from the Thomas Jefferson National Accelerator Facility told Nature. “And this is what we want to do with the new generation of experiments.”

Back in 1966, American physicist Heinz Pagels showed that the energy and momentum of a proton’s internal components can be gleaned from so-called gravitational form factors. However, Pagels himself pointed out that, because the gravitational forces involved would be ludicrously tiny, his findings wouldn’t actually ever be used in practice.

Since then, however, researchers have developed mathematical models that allow them to produce a 3D model of a proton’s structure by probing its electromagnetic force. These models are known as generalized parton distributions — or GDPs. It was these GDPs that the team used in lieu of the gravitational probe to turn Pagels’ work into something with practical applications.

“This is the beauty of it. You have this map that you think you will never get,” says Elouadrhiri. “But here we are, filling it in with this electromagnetic probe.”

The team used the Compton scattering effect, which describes the interaction between photons and a charged particle (such as an electron) to finally peer into the proton. The team accelerated an electron to massive speeds, in a bid to narrow its wavelength — then shot it at a proton. Then they analyzed the pattern of scattering for the photons produced int he collision to determine how the quarks fared in the impact.

According to the team, the scattering patterns suggest that the center of the proton is pressurized, preventing the particle from collapsing in on itself. An equal pressure from the outside keeps the quarks together. What was surprising, however, was just how immense these pressures were: 100 decillions (35 zeroes) Pascal. To put that into perspective, it’s ten times the pressure inside a neutron star.

RelatedPosts

LHC produces first results
What Can Quartz Crystals Really Do?
The proton and antiproton are incredibly similar — indicating that perhaps, our universe shouldn’t exist
At a few million atmospheric pressures, Hydrogen nears metal conductivity

Next up, the team plans to continue using this process to further explore the proton’s internal structure and mechanics.

The paper “The pressure distribution inside the proton” has been published in the journal Nature.

Tags: pressureprotonquarks

Share17TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Matter and Energy

What is the Electron Cloud Model: this is how electrons inside an atom really behave

byTibi Puiu
3 years ago
Cosmology

What is the Standard Model of Particle Physics?

byRob Lea
4 years ago
Physics

Decade-old debate put to rest with new measurement of proton diameter

byAlexandru Micu
6 years ago
Surface displacement.
News

Scientists have calculated the force of a photon hitting an object

byAlexandru Micu
7 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.