ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists create artificial material capable of metabolism, self-assembly, movement, and organization — key traits of life

If it was capable of multiplying, it would essentially be life.

Mihai AndreibyMihai Andrei
April 17, 2019
in Biology, News, Tech
A A
Share on FacebookShare on TwitterSubmit to Reddit

The new material is eerily life-like.

The DNA material is capable of metabolism, in addition to self-assembly and organization. Image credits: John Munson/Cornell University.

What makes something alive? Is it the fact that it has a metabolism, that it can organize itself into a coherent structure? If that’s all it takes, then researchers might have just created artificial life. A Cornell team took advantage of some of DNA’s unique properties to develop a life-like material that can self-organize, self-assemble, and even metabolize nutrients.

“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said Dan Luo, professor of biological and environmental engineering in the College of Agriculture and Life Sciences.

DNA is the foundation of all life on Earth. It contains the instructions needed for an organism to survive and develop, producing new cells and sweeping old ones away in a hierarchical pattern. However, DNA is also a polymer, meaning it has some useful bio-construction properties that researchers can use.

In this study, Luo and colleagues used what they call DASH (DNA-based Assembly and Synthesis of Hierarchical) materials to create a biomaterial that can autonomously emerge from its nanoscale building blocks and arrange itself — first into simple polymers, then into more complex shapes.

They started from a sequence of 55 nucleotides (the building blocks of DNA and RNA) and from there, the DNA molecules were multiplied hundreds of thousands of times, creating chains of repeating DNA reaching a few millimetres in size. Then, this reaction was injected into a microfluidic device that the necessary energy and materials for biosynthesis.

As material gathered more and more resources, the DNA was able to synthesize new strands at the front end, while the tail end degraded to maintain an optimum balance. Using this mechanism, it was also able to move around, even against the flow — very similar to how slime molds move.

“The designs are still primitive, but they showed a new route to create dynamic machines from biomolecules. We are at a first step of building lifelike robots by artificial metabolism,” said Shogo Hamada, lecturer and research associate in the Luo lab, and lead and co-corresponding author of the paper. “Even from a simple design, we were able to create sophisticated behaviors like racing. Artificial metabolism could open a new frontier in robotics.”

If that wasn’t life-like enough, researchers are currently working on ways to improve longevity and self-replication.

RelatedPosts

Neanderthals were on the verge of extinction well before humans entered Europe
Better diets could save billions in U.S. health care costs
After fingerprint and DNA, now a protein test could complement forensic investigations
A deer tooth pendant carries the DNA of a woman from Eurasia

“Dynamic biomaterials powered by artificial metabolism could provide a previously unexplored route to realize “artificial” biological systems with regenerating and self-sustaining characteristics,” the study concludes.

The goal is not to produce artificial life, but rather to use the system as a biosensor or as a dynamic template for making proteins without living cells.

The study was published in Science Robotics.

Tags: biomoleculesdnametabolismNucleotide

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Health

Herpes Virus Hijacks Human DNA Within Just an Hour of Infection

byTudor Tarita
4 days ago
Genetics

Scientists uncover anti-aging “glue” that naturally repairs damaged DNA

byMihai Andrei
1 week ago
Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
3 weeks ago
Genetics

Scientists Gave a Mouse a Stretch of Human DNA and Its Brain Grew 6% Bigger

byTudor Tarita
1 month ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.